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1. Let the continuous random variable (RV) 𝑿 have the probability density 

function (PDF), 

 

𝒇(𝒙) = 𝒄𝒙𝟐,                  𝟎 ≤ 𝒙 ≤ 𝟑 

 

a) Determine the value of c such that 𝒇(𝒙) represents a valid PDF. 

As discussed in the lectures, 𝑓(𝑥) represents a valid PDF if two conditions hold: i) 𝒇(𝒙) ≥

𝟎 and ii) ∫ 𝒇(𝒙)
∞

−∞
𝒅𝒙 = 𝟏. As 𝑥2 ≥ 0 for all values of x, then 𝑐 ≥ 0 for the first condition 

to hold. We can look more closely at the second condition by substituting  𝑓(𝑥) by 𝑐𝑥2 

in the second condition and solving the integral. From the rules of calculus, we know that: 

∫ 𝒄 ∗ 𝒈(𝒙)𝒅𝒙 = 𝒄 ∗ ∫ 𝒈(𝒙)𝒅𝒙 

Hence, we can rewrite the second condition as: 

∫𝑐 ∗ 𝑥2
3

0

𝑑𝑥 = 𝑐 ∗ ∫𝑥2
3

0

𝑑𝑥 = 1 

Noticing that the range of x defines the bounds of the integral. In addition, from the rules 

of calculus we know that: 

∫ 𝒙𝒂𝒅𝒙 =
𝒙𝒂+𝟏

𝒂 + 𝟏
+ 𝑪 

Hence, we can rewrite the previous equation as: 

𝑐 ∗ [
𝑥3

3
]
0

3

= 1 

The First Fundamental Theorem of Calculus states the following: 

𝒊𝒇 𝒇 𝒊𝒔 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒂𝒏𝒅 𝑭(𝒙) = ∫ 𝒇(𝒙)𝒅𝒙,     𝒕𝒉𝒆𝒏         ∫ 𝒇(𝒙)
𝒂

𝒃

𝒅𝒙 = [𝑭(𝒙)]𝒃
𝒂

= 𝑭(𝒙 = 𝒂) − 𝑭(𝒙 = 𝒃) 

Applying it to our definite integral, we get: 
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𝑐 ∗ (
33

3
−
03

3
) = 𝑐 ∗ (32 − 0) = 9 ∗ 𝑐 = 1 

Isolating c, we get: 

𝒄 =
𝟏

𝟗
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b) Draw the PDF of 𝑿. 

In order to draw the PDF, we first write it down: 

𝑦 =
𝑥2

9
, 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 3 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 1 

We, then, find some values of y for given values of x: 

y x 

0 0 

1

9
 1 

4

9
 2 

1 3 

  

Finally, we plot those values. I have used Mathematica, a software widely used for 

mathematic applications. You can access this software from university computers. 
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c) Find the following probabilities and illustrate them graphically; 

We have previously computed that 𝑐 ∗ ∫ 𝑥2
𝑎

𝑏
𝑑𝑥 = 𝑐 ∗ [

𝑥3

3
]
𝑏

𝑎

. As we now know that 𝑐 =

1

9
, in the following exercises we directly use the formula  

1

9
∗ [

𝑥3

3
]
𝑏

𝑎

. We use the First 

Fundamental Theorem of Calculus, as stated above, to find the solutions. 

 

a. 𝐏𝐫[𝟎 ≤ 𝑿 ≤ 𝟏] 

𝐏𝐫[𝟎 ≤ 𝑿 ≤ 𝟏] =
1

9
∗ [
𝑥3

3
]
𝟎

𝟏

=
1

9
∗ [
𝟏3

3
−
𝟎3

3
] =

1

9
∗ [
1

3
− 0] =

1

9
∗ [
1

3
] =

𝟏

𝟐𝟕
 

b. 𝐏𝐫[𝟎 ≤ 𝑿 ≤ 𝟐] 

𝐏𝐫[𝟎 ≤ 𝑿 ≤ 𝟐] =
1

9
∗ [
𝑥3

3
]
𝟎

𝟐

=
1

9
∗ [
𝟐3

3
−
𝟎3

3
] =

1

9
∗ [
8

3
− 0] =

1

9
∗ [
8

3
] =

𝟖

𝟐𝟕
 

c. 𝐏𝐫[𝟏 ≤ 𝑿 ≤ 𝟐] 

𝐏𝐫[𝟏 ≤ 𝑿 ≤ 𝟐] =
1

9
∗ [
𝑥3

3
]
1

𝟐

=
1

9
∗ [
𝟐3

3
−
𝟏3

3
] =

1

9
∗ [
8

3
−
1

3
] =

1

9
∗ [
7

3
] =

𝟕

𝟐𝟕
 

 

Extra comment: It is interesting to see that 

𝐏𝐫[𝟎 ≤ 𝑿 ≤ 𝟐] = 𝐏𝐫[𝟎 ≤ 𝑿 ≤ 𝟏] + 𝐏𝐫[𝟏 ≤ 𝑿 ≤ 𝟐] 

But, why is this the case? If we abstract from the concepts we are dealing with (PDF’s), 

we are just computing areas. In this case, the areas between two numbers just represent 

the probability that the value of a variable lies between two given numbers. Hence, it 

makes sense that the probability that a variable lies between 0 and 2 is just the sum of the 

probabilities that such a variable lies between 0 and 1 and the probability that our variable 

lies between 1 and 2. 
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2. Let the RVs 𝑿 and 𝒀 have joint PDF 

𝒇(𝒙, 𝒚) = 𝟐 − 𝒙 − 𝒚,        𝟎 ≤ 𝒙 ≤ 𝟏,        𝟎 ≤ 𝒚 ≤ 𝟏. 

a) Verify that 𝒇(𝒙, 𝒚) represents a valid PDF. 

For a joint PDF to be valid, we need conditions analogous to the ones outlined in the first 

answer. Firstly, we want 𝑓(𝑥, 𝑦) ≥ 0 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 1,    0 ≤ 𝑦 ≤ 1 to hold for every 

possible value in the range of 𝑥 and 𝑦. In order to verify that this holds true, we compute 

the value of 𝑓(𝑥, 𝑦) at the least upper bound of 𝑥 and 𝑦. We define a least upper bound 

as the highest value that 𝑥 and 𝑦 can take that lies within their corresponding ranges. In 

our case, the least upper bounds of 𝑥 and 𝑦, labelled as sup(𝑋) and sup(𝑌) respectively, 

are sup(𝑋) = 1 and sup(𝑌) = 1. Hence, 

𝑓(𝑥 = sup(𝑋) , 𝑦 = sup(𝑌)) = 2 − sup(𝑋) − sup(𝑌) = 2 − 1 − 1 = 0 ≥ 0 

As we can see, the first condition for the existence of a PDF is satisfied for the proposed 

range of values of 𝑥 and 𝑦. Notice that this wouldn’t hold true, for instance, for  0 ≤ 𝑥 ≤

2; since 𝑓(𝑥 = 2, 𝑦 = 1) = 2 − 2 − 1 = −1 ≤ 0. 

Secondly, we want that the area of the joint PDF between the ranges of 𝑥 and 𝑦 is equal 

to 1, meaning that the probability that the random variables take a number between all 

the proposed values can never be greater than certainty. More formally, 

∫ ∫ 𝒇(𝒙, 𝒚)

∞

−∞

𝒅𝒙

∞

−∞

𝒅𝒚 = 𝟏 

Were −∞ and ∞ refer to generic upper and lower bounds of 𝑥 and 𝑦. As, in our case, 

0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1 and 𝑓(𝑥, 𝑦) = 2 − 𝑥 − 𝑦, then the condition becomes: 

∫∫(2 − 𝑥 − 𝑦)

1

0

𝑑𝑥

1

0

𝑑𝑦 = 1 

Whenever we have two integrals with respect to two different variables, we proceed in 

the following way. First, we integrate with respect to one variable, leaving the other one 

as a constant. Secondly, we integrate with respect to the remaining variable. As we are 

dealing with definite integrals, after the first and second integration we need to use the 

First Fundamental Theorem of Calculus. From the rules of calculus, we know that: 



 7 

∫𝒃 + 𝒙𝒂 𝒅𝒙 = 𝒃 ∗ 𝒙 +
𝒙𝒂+𝟏

𝒂 + 𝟏
+ 𝑪 

We start by integrating with respect to 𝑥. Hence, 𝑦 is just a constant and should be treated 

as the “𝑏” in the rule above: 

∫[2 ∗ 𝑥 − 𝑦 ∗ 𝑥 −
𝑥2

2
]
𝟎

𝟏1

0

𝑑𝑦 = 1 

Using the First Fundamental Theorem of Calculus, we get: 

∫{(2 ∗ (𝟏) − 𝑦 ∗ (𝟏) −
(𝟏)2

2
) − (2 ∗ (𝟎) − 𝑦 ∗ (𝟎) −

(𝟎)2

2
)}

1

0

𝑑𝑦 = 1 

Which can be simplified to get the following equation: 

∫(2 − 𝑦 −
1

2
)

1

0

𝑑𝑦 = ∫(
3

2
− 𝑦)

1

0

𝑑𝑦 = 1 

We know integrate with respect to 𝑦 to get: 

[
3

2
∗ 𝑦 −

𝑦2

2
]
𝟎

𝟏

= 1 

Now, using the First Fundamental Theorem of Calculus, we get: 

[
3

2
(𝟏) −

(𝟏)2

2
] − [

3

2
(𝟎) −

(𝟎)2

2
] =

3

2
−
1

2
=
2

2
= 𝟏 = 𝟏 

Hence, we can see that the second condition holds, as well, true for the proposed ranges 

of 𝑥 and 𝑦. 
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b) Determine the marginal density functions of 𝑿 and 𝒀. 

In order to find the marginal density functions of 𝑋 and 𝑌, we need to integrate 𝑓(𝑥, 𝑦) 

with respect to the opposite variable for which we want to find the marginal density. For 

𝑥, this implies: 

𝑓𝑋(𝑥) = ∫(2 − 𝑥 − 𝑦)

1

0

𝑑𝑦 

Using the rules described above, we get: 

𝑓𝑋(𝑥) = [2 ∗ 𝑦 − 𝑥 ∗ 𝑦 −
𝑦2

2
]
𝟎

𝟏

= [2 ∗ (𝟏) − 𝑥 ∗ (𝟏) −
(1)2

2
] − [2 ∗ (𝟎) − 𝑥 ∗ (𝟎) −

(𝟎)2

2
] 

Which simplifies to: 

𝒇𝑿(𝒙) = [𝟐 − 𝒙 −
𝟏

𝟐
] =

𝟑

𝟐
− 𝒙 

Proceeding analogously for 𝑦, we have the following condition: 

𝑓𝑌(𝑦) = ∫(2 − 𝑥 − 𝑦)

1

0

𝑑𝑥 

Using the rules described above, we get: 

𝑓𝑌(𝑦) = [2 ∗ 𝑥 − 𝑦 ∗ 𝑥 −
𝑥2

2
]
𝟎

𝟏

= [2 ∗ (𝟏) − 𝑦 ∗ (𝟏) −
(1)2

2
] − [2 ∗ (𝟎) − 𝑦 ∗ (𝟎) −

(𝟎)2

2
] 

Which simplifies to: 

𝒇𝒀(𝒚) = [𝟐 − 𝒚 −
𝟏

𝟐
] =

𝟑

𝟐
− 𝒚 

  



 9 

c) Evaluate the following probabilities, 

This section is a little bit different from the analogous one in the first exercise, as it implies 

dealing with joint density functions. Here, when we get asked Pr[0 ≤ 𝑋 ≤ 𝑎] or 

Pr[0 ≤ 𝑌 ≤ 𝑎], we make reference to the marginal cumulative probabilities. This is 

because we want to isolate the influence of the variable we are interested in, and we do 

so by analysing the probabilities in the full range of the other variables. This implies that 

one needs to use the marginal density functions found in the exercise above. However, 

when we are asked to find Pr[0 ≤ 𝑋 ≤ 𝑎,   0 ≤ 𝑌 ≤ 𝑏 ], we need to compute the joint 

cumulative probability given the ranges of 𝑥 and 𝑦 proposed.   

a. 𝐏𝐫 [𝟎 ≤ 𝑿 ≤
𝟏

𝟐
] 

Given the proposed range of 𝑥, we need to compute the definite integral of the marginal 

density of 𝑥 described below: 

Pr [0 ≤ 𝑋 ≤
1

2
] = ∫(

3

2
− 𝑥)

1
2

0

𝑑𝑥 

Applying the rules mentioned above, we get: 

Pr [0 ≤ 𝑋 ≤
1

2
] = [

3

2
∗ 𝑥 −

𝑥2

2
]
𝟎

𝟏
𝟐

 

Which, using the First Fundamental Theorem of Calculus, becomes: 

𝐏𝐫 [𝟎 ≤ 𝑿 ≤
𝟏

𝟐
] = [

3

2
∗ (
𝟏

𝟐
) −

(
𝟏
𝟐)

2

2
] − [

3

2
∗ (𝟎) −

(𝟎)2

2
] = [

3

4
−

1
4
2
] =

3

4
−
1

8
=
6 − 1

8

=
𝟓

𝟖
 

b. 𝐏𝐫 [𝟎 ≤ 𝑿 ≤
𝟏

𝟐
,    𝟎 ≤ 𝒀 ≤

𝟏

𝟐
] 

As explained before, a range for each variable implies a joint cumulative probability. This 

can be computed, given the proposed ranges, with the following integral: 
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Pr [0 ≤ 𝑋 ≤
1

2
, 0 ≤ 𝑦 ≤

1

2
] = ∫∫(2 − 𝑥 − 𝑦)

1
2

0

𝑑𝑥

1
2

0

𝑑𝑦 

As explained in part a), we first integrate with one variable, treating the other one as 

constant. Afterwards, we apply the first Fundamental Theorem of Calculus and repeat 

those two steps. We start by integrating with respect to 𝑥. Following the aforementioned 

rules, we get: 

Pr [0 ≤ 𝑋 ≤
1

2
, 0 ≤ 𝑦 ≤

1

2
] = ∫[2 ∗ 𝑥 − 𝑦 ∗ 𝑥 −

𝑥2

2
]
𝟎

𝟏
𝟐

1
2

0

𝑑𝑦 

Applying the First fundamental Theorem of Calculus, we get: 

Pr [0 ≤ 𝑋 ≤
1

2
, 0 ≤ 𝑦 ≤

1

2
]

= ∫{[2 ∗ (
𝟏

𝟐
) − 𝑦 ∗ (

𝟏

𝟐
) −

(
𝟏
𝟐)

2

2
] − [2 ∗ (𝟎) − 𝑦 ∗ (𝟎) −

(𝟎)2

2
]}

1
2

0

𝑑𝑦 

Which, after simplifying, becomes: 

Pr [0 ≤ 𝑋 ≤
1

2
, 0 ≤ 𝑦 ≤

1

2
] = ∫{[1 −

𝑦

2
−

1
4
2
]}

1
2

0

𝑑𝑦 = ∫{[1 −
𝑦

2
−
1

8
]}

1
2

0

𝑑𝑦

= ∫(
7

8
−
𝑦

2
)

1
2

0

𝑑𝑦 

If we now integrate with respect to 𝑦, we get: 

Pr [0 ≤ 𝑋 ≤
1

2
, 0 ≤ 𝑦 ≤

1

2
] = [

7

8
∗ 𝑦 −

1

2
∗
𝑦2

2
]
𝟎

𝟏
𝟐

 

Again, applying the First Fundamental Theorem of Calculus, we get: 

Pr [0 ≤ 𝑋 ≤
1

2
, 0 ≤ 𝑦 ≤

1

2
] = [

7

8
∗ (
𝟏

𝟐
) −

1

2
∗
(
𝟏
𝟐)

2

2
] − [

7

8
∗ (𝟎) −

1

2
∗
(𝟎)2

2
] 
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Which simplifies to: 

𝐏𝐫 [𝟎 ≤ 𝑿 ≤
𝟏

𝟐
, 𝟎 ≤ 𝒚 ≤

𝟏

𝟐
] = [

7

16
−
1

2
∗

1
4
2
] =

7

16
−
1

2
∗
1

8
=
7

16
−
1

16
=
6

16
=
𝟑

𝟖
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3. Let the RVs 𝑿 and 𝒀 have joint PDF 

𝒇(𝒙, 𝒚) = 𝒙𝟐 +
𝒙 ∗ 𝒚

𝟑
,    𝟎 ≤ 𝒙 ≤ 𝟏,    𝟎 ≤ 𝒚 ≤ 𝟐. 

a) Are 𝑿 and 𝒀 statistically independent? 

In order to check whether 𝑋 and 𝑌 are statistically independent, we need to compare the 

joint PDF with the product of the marginal densities of 𝑋 and 𝑌. They will be statistically 

independent if the following relation holds: 

𝑓𝑋(𝑥) ∗ 𝑓𝑌(𝑦) = 𝑓(𝑥, 𝑦) 

As the joint PDF is already given in the question, we next step is to compute the marginal 

densities and, afterwards, compute their product. Following the logic of the previous 

question, the marginal density of 𝑋 is given by: 

𝑓𝑋(𝑥) = ∫(𝑥2 +
𝑥 ∗ 𝑦

3
)

2

0

𝑑𝑦 

Using the rules outlined above, we get: 

𝑓𝑋(𝑥) = [𝑥
2 ∗ 𝑦 +

𝑥

3
∗
𝑦2

2
]
𝟎

𝟐

= [𝑥2 ∗ (𝟐) +
𝑥

3
∗
(𝟐)2

2
] − [𝑥2 ∗ (𝟎) +

𝑥

3
∗
(𝟎)2

2
] 

Which simplifies to: 

𝑓𝑋(𝑥) = 2 ∗ 𝑥2 +
4 ∗ 𝑥

6
= 2 ∗ 𝑥2 +

2 ∗ 𝑥

3
 

The marginal density of 𝑌 is given by: 

𝑓𝑌(𝑦) = ∫(𝑥2 +
𝑥 ∗ 𝑦

3
)

1

0

𝑑𝑥 

Using the rules outlined above, we get: 

𝑓𝑌(𝑦) = [
𝑥3

3
+
𝑥2

2
∗
𝑦

3
]
𝟎

𝟏

= [
(𝟏)3

3
+
(𝟏)2

2
∗
𝑦

3
] − [

(𝟎)3

3
+
(𝟎)2

2
∗
𝑦

3
] 

Which simplifies to: 
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𝑓𝑌(𝑦) =
1

3
+
𝑦

6
 

Multiplying both marginal density function yields: 

𝑓𝑋(𝑥) ∗ 𝑓𝑌(𝑦) = (2 ∗ 𝑥2 +
2 ∗ 𝑥

3
) ∗ (

1

3
+
𝑦

6
) 

Expanding the Right Hand Side of the previous equation, we get: 

𝑓𝑋(𝑥) ∗ 𝑓𝑌(𝑦) =
2 ∗ 𝑥2

3
+
2 ∗ 𝑥2 ∗ 𝑦

6
+
2 ∗ 𝑥

9
+
2 ∗ 𝑥 ∗ 𝑦

18
 

Which simplifies to: 

𝑓𝑋(𝑥) ∗ 𝑓𝑌(𝑦) =
𝑥2 ∗ (2 + 𝑦)

3
+
𝑥 ∗ (2 + 𝑦)

9
 

Comparing the previous equation with the joint PDF, it is clear to see that the condition 

for statistical independence does not hold for all the possible values of 𝑥 and 𝑦*: 

𝒙𝟐 ∗ (𝟐 + 𝒚)

𝟑
+
𝒙 ∗ (𝟐 + 𝒚)

𝟗
≠ 𝒙𝟐 +

𝒙 ∗ 𝒚

𝟑
 

  

                                           
* It does hold only if 𝑥 =

2

3
. However, note that this is only one point in the whole range of values that 𝑥 

can take. As far as the equality does not hold for all the possible values of 𝑥 and 𝑦, then the two variables 

are said to be dependent. 
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b) Evaluate the following probabilities, 

The first to subsections are straightforward and follow the same logic as the ones in the 

previous exercise. The last two subsections follow 1.5 in the lecture notes closely. In 

order to find 𝑃𝑟[(0 ≤ 𝑌 ≤ 𝑎|𝑋 = 𝑏)] one needs to divide the joint PDF by the marginal 

pdf of 𝑋, both of them evaluated at the relevant ranges.  

a. 𝑷𝒓 [𝑿 ≥
𝟏

𝟐
] 

We need to use the marginal PDF of 𝑋 and find the definite integral between 
1

2
 and 1: 

Pr [𝑋 ≥
1

2
] = ∫𝑓𝑋(𝑥)

1

1
2

𝑑𝑥 = ∫2 ∗ 𝑥2 +
2 ∗ 𝑥

3

1

1
2

𝑑𝑥 

Using the rules outlined above, we get: 

Pr [𝑋 ≥
1

2
] = ∫𝑓𝑋(𝑥)

1

1
2

𝑑𝑥 = [
2 ∗ 𝑥3

3
+
2

3
∗
𝑥2

2
]
𝟏
𝟐

𝟏

 

Using the First Fundamental Theorem of Calculus, we get: 

Pr [𝑋 ≥
1

2
] = [

2 ∗ (𝟏)3

3
+
2

3
∗
(𝟏)2

2
] − [

2 ∗ (
𝟏
𝟐)

3

3
+
2

3
∗
(
𝟏
𝟐)

2

2
] 

Which, simplifying, is equal to: 

𝐏𝐫 [𝑿 ≥
𝟏

𝟐
] = [

2

3
+
2

6
] − [

2 ∗
1
8

3
+
2

3
∗

1
4
2
] = [

2

3
+
1

3
] − [

1

12
+
1

12
] = 1 −

2

12
=
10

12
=
𝟓

𝟔
 

b. 𝑷𝒓 [𝟎 ≤ 𝒀 ≤
𝟏

𝟐
,    𝟎 ≤ 𝑿 ≤

𝟏

𝟐
] 

We need to find the definite integral of the joint PDF at the relevant ranges for 𝑋 and 𝑌: 

Pr [0 ≤ 𝑌 ≤
1

2
, 0 ≤ 𝑋 ≤

1

2
] = ∫∫(𝑥2 +

𝑥 ∗ 𝑦

3
)

1
2

0

1
2

0

𝑑𝑥𝑑𝑦 
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As we did in the previous exercise, we need to integrate with respect to one variable while 

treating the other one as a constant, use the First Fundamental Theorem of Calculus and 

repeat with respect to the remaining variable. We start by integrating with respect to 𝑥: 

Pr [0 ≤ 𝑌 ≤
1

2
, 0 ≤ 𝑋 ≤

1

2
] = ∫ [

𝑥3

3
+
𝑥2

2
∗
𝑦

3
]
𝟎

𝟏
𝟐

1
2

0

𝑑𝑦 

Applying the First fundamental Theorem of Calculus, we get: 

Pr [0 ≤ 𝑌 ≤
1

2
, 0 ≤ 𝑋 ≤

1

2
] = ∫{[

(
𝟏
𝟐)

3

3
+
(
𝟏
𝟐)

2

2
∗
𝑦

3
] − [

(𝟎)3

3
+
(𝟎)2

2
∗
𝑦

3
]}

1
2

0

𝑑𝑦 

Which, by simplifying, is equal to: 

Pr [0 ≤ 𝑌 ≤
1

2
, 0 ≤ 𝑋 ≤

1

2
] = ∫{[

1
8
3
+

1
4
2
∗
𝑦

3
]}

1
2

0

𝑑𝑦 = ∫{[
1

24
+
𝑦

24
]}

1
2

0

𝑑𝑦 

Now, integrating with respect to 𝑦 yields: 

Pr [0 ≤ 𝑌 ≤
1

2
, 0 ≤ 𝑋 ≤

1

2
] = [

𝑦

24
+
1

24
∗
𝑦2

2
]
𝟎

𝟏
𝟐

 

Again, by using the First Fundamental Theorem of Calculus, we get: 

Pr [0 ≤ 𝑌 ≤
1

2
, 0 ≤ 𝑋 ≤

1

2
] = [

(
𝟏
𝟐)

24
+
1

24
∗
(
𝟏
𝟐)

2

2
] − [

(𝟎)

24
+
1

24
∗
(𝟎)2

2
] 

Which, when simplifying, becomes: 

𝐏𝐫 [𝟎 ≤ 𝒀 ≤
𝟏

𝟐
, 𝟎 ≤ 𝑿 ≤

𝟏

𝟐
] =

1

48
+
1

24
∗

1
4
2
=
1

48
+
1

24
∗
1

8
=

4

192
+

1

192
=

𝟓

𝟏𝟗𝟐
 

c. 𝑷𝒓 [(𝟎 ≤ 𝒀 ≤
𝟏

𝟐
|𝑿 =

𝟏

𝟐
)] 

As stated before, we need to divide the joint PDF by the marginal PDF 𝑋, both of them 

evaluated at the relevant ranges. As 𝑋 =
1

2
, we need to find 𝑓𝑋(𝑥 =

1

2
): 
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𝑓𝑋 (𝑥 =
1

2
) = 2 ∗ (

1

2
)
2

+
2 ∗ (

1
2)

3
 

Which is equivalent to: 

𝑓𝑋 (𝑥 =
1

2
) = 2 ∗

1

4
+
1

3
=
1

2
+
1

3
=
5

6
 

Hence, 

𝑃𝑟 [(0 ≤ 𝑌 ≤
1
2 |𝑋 =

1
2)] =

∫ 𝑓 (𝑥 =
1
2 , 𝑦)

1
2
0

𝑑𝑦

𝑓𝑋 (𝑥 =
1
2)

=

∫ ((
1
2)

2

+
(
1
2
) ∗ 𝑦

3 )
1
2
0

𝑑𝑦

5
6

 

Which is equivalent to: 

𝑃𝑟 [(0 ≤ 𝑌 ≤
1
2 |𝑋 =

1
2)] =

∫ (
1
4 +

𝑦
6)

1
2
0

𝑑𝑦

5
6

 

Integrating with respect to 𝑦, we get: 

𝑃𝑟 [(0 ≤ 𝑌 ≤
1
2 |𝑋 =

1
2)] =

[
𝑦
4 +

1
6 ∗

𝑦2

2 ]
𝟎

𝟏
𝟐

5
6

 

Applying the First Fundamental Theorem of Calculus, we get: 

𝑃𝑟 [(0 ≤ 𝑌 ≤
1
2 |𝑋 =

1
2)] =

[
(
𝟏
𝟐)

4
+
1
6
∗
(
𝟏
𝟐)

2

2
] − [

𝟎
4
+
1
6
∗
𝟎2

2
]

5
6

 

Simplifying, we get: 

𝑷𝒓 [(𝟎 ≤ 𝒀 ≤
𝟏
𝟐 |𝑿 =

𝟏
𝟐)] =

[
1
8 +

1
6 ∗

1
4
2]

5
6

=
[
1
8 +

1
6 ∗

1
8]

5
6

=
[
6 + 1
48 ]

5
6

=
7

48
∗
6

5
=

7 ∗ 6

6 ∗ 8 ∗ 5

=
𝟕

𝟒𝟎
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d. 𝑷𝒓 [(𝟎 ≤ 𝑿 ≤
𝟏

𝟐
|𝒀 =

𝟏

𝟐
)] 

As 𝑌 =
1

2
, we need to find 𝑓𝑌(𝑦 =

1

2
): 

𝑓𝑌 (𝑦 =
1

2
) =

1

3
+

1
2
6
=
1

3
+
1

12
=
5

12
 

Now, we apply the formula discussed before: 

𝑃𝑟 [(0 ≤ 𝑋 ≤
1
2 |
𝑌 =

1
2
)] =

∫ 𝑓 (𝑥, 𝑦 =
1
2
)

1
2
0

𝑑𝑥

𝑓𝑌 (𝑦 =
1
2
)

=

∫ (𝑥2 +
(
1
2
) ∗ 𝑥

3 )
1
2
0

𝑑𝑥

5
12

=
∫ (𝑥2 +

𝑥
6
)

1
2
0

𝑑𝑥

5
12

 

Integrating with respect to 𝑥, we get: 

𝑃𝑟 [(0 ≤ 𝑋 ≤
1
2 |𝑌 =

1
2)] =

[
𝑥3

3 +
1
6 ∗

𝑥2

2 ]
𝟎

𝟏
𝟐

5
12

 

Applying the First Fundamental Theorem of Calculus, we get: 

𝑃𝑟 [(0 ≤ 𝑋 ≤
1
2 |𝑌 =

1
2)] =

[
(
𝟏
𝟐)

3

3
+
1
6
∗
(
𝟏
𝟐)

2

2 ] − [
(0)3

3
+
1
6
∗
(𝟎)2

2 ]

5
12

 

Simplifying, we get: 

𝑷𝒓 [(𝟎 ≤ 𝑿 ≤
𝟏
𝟐 |𝒀 =

𝟏
𝟐)] =

[

1
8
3 +

1
6 ∗

1
4
2]

5
12

=

1
24 +

1
48

5
12

=

2 + 1
48
5
12

=
3

48
∗
12

5
=

3 ∗ 2 ∗ 6

6 ∗ 2 ∗ 4 ∗ 5

=
𝟑

𝟐𝟎
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Question 1. A firm’s profit is made by combining sand and water. A unit of the 

product contains 𝑿% of sand, where 𝑿 is considered to be a RV. Suppose that 𝑿 has 

the PDF 

 

𝒇(𝒙) =
𝟑𝒙(𝟏𝟎 − 𝒙)

𝟓𝟎𝟎
,        𝟎 ≤ 𝑿 ≤ 𝟏𝟎. 

 

Let 𝒑 denote the profit per unit, be the following function of 𝑿, 

 

𝒑 = 𝒂 + 𝒃𝑿. 

 

Compute the expected profit per unit. 

First, note that the question already gives the profit: there is no need to further substract 

any cost! Secondly, to find the expected profit per unit we need to calculate the expected 

value of 𝑝, as defined below: 

𝐸[𝑝] = 𝐸[𝑎 + 𝑏𝑋] 

Because of the rules of expectations outlined in the lecture notes, we know that 𝐸[𝑎] = 𝑎 

and 𝐸[𝑏𝑋] = 𝑏𝐸[𝑋]. Hence, we can rewrite the previous equation as: 

𝐸[𝑝] = 𝑎 + 𝑏𝐸[𝑋] 

We know that the expected value of the RV 𝑋 can be expressed as: 

𝐸[𝑋] = ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

−∞

 

Substituting 𝐸[𝑋] in the equation provided for 𝐸[𝑝], we get: 

𝐸[𝑝] = 𝑎 + 𝑏 ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

−∞
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Substituting the generic bounds of the integral along with the specific functional form of 

𝑓(𝑥) given our setup, we get: 

𝐸[𝑝] = 𝑎 + 𝑏∫ 𝑥
3𝑥(10 − 𝑥)

500

10

0

𝑑𝑥 

Expanding the term inside the integral, we get: 

𝐸[𝑝] = 𝑎 + 𝑏∫
30𝑥2 − 3𝑥3

500

10

0

𝑑𝑥 

Using the rules of calculus (specifically, using the fact that ∫ 𝑥𝑎𝑑𝑥 =
𝑥𝑎+1

𝑎+1
+ 𝐶 and 

∫ [𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥), we get: 

𝐸[𝑝] = 𝑎 + 𝑏 [
30

500
∗
𝑥3

3
−

3

500
∗
𝑥4

4
]
𝟎

𝟏𝟎

 

Applying the First Fundamental Theorem of Calculus, we get: 

𝐸[𝑝] = 𝑎 + 𝑏 {[
30

500
∗
𝟏𝟎3

3
−

3

500
∗
𝟏𝟎4

4
] − [

30

500
∗
𝟎3

3
−

3

500
∗
𝟎4

4
]} 

Which, after simplifying, collapses to: 

𝐸[𝑝] = 𝑎 + 𝑏 {
30

500
∗
1,000

3
−

3

500
∗
10,000

4
} = 𝑎 + 𝑏[20 − 15] = 𝑎 + 5𝑏 

 

 

Answer: Hence, the expected profit per unit of the firm is 𝒂 +

𝟓𝒃. 
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Question 2. An electronic device has a life length 𝑿 (which is a RV) with the following 

PDF, 

 

𝒇(𝒙) = 𝒆−𝒙,        𝒙 > 𝟎. 

 

Suppose that the cost of manufacturing such an item is £2. The manufacturer sells 

the item for £6, but guarantees a full refund if 𝑿 ≤ 𝟎. 𝟗. What is the manufacturer’s 

expected profit per item? 

 

The first thing we need to do is to calculate the profit of the manufacturer in all the 

potential situations that may arise. If 𝑋 > 0.9, the manufacturer earns £6 by selling the 

item and pays £2 for producing it, making a total profit of £4. If, in contrast, 𝑋 ≤ 0.9, 

then the manufacturer pays the production cost of £2 but refunds the full price of the 

electronic device to the client; making, thus, a loss of £2. We can represent these two 

situations with a step function, as shown below: 

𝑝 = {
£4    𝑖𝑓 𝑋 > 0.9
−£2 𝑖𝑓 𝑋 ≤ 0.9

 

The expected profit of the manufacturer in a given state of nature is calculated by 

multiplying the profit of the manufacturer in a given state by the probability of such state 

of nature happening. The expected profit, 𝐸[𝑝], is calculated by aggregating the expected 

profit at each of the states of nature. In our case there are only two states of nature: either  

𝑋 > 0.9 or 𝑋 ≤ 0.9. Hence, the expected profit of the manufacturer can be written as: 

𝐸[𝑝] = £4 ∗ Pr[𝑋 > 0.9] − 2£ ∗ Pr[𝑋 ≤ 0.9] 

We know that, in order for 𝑓(𝑥) to represent a valid PDF, then the following property 

needs to hold true: 

Pr[𝑋 ≤ 0.9] + Pr[𝑋 > 0.9] = ∫ 𝑥𝑓(𝑥)

∞

0

𝑑𝑥 = 1 
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This is so because 𝑥 > 0 represents all the potential values that 𝑥 can take. Hence, the 

probability that 𝑥 can take any of its potential values has to be equal to 1. Isolating 

Pr[𝑋 > 0.9] in the left hand side, we get: 

Pr[𝑋 > 0.9] = 1 − Pr[𝑋 ≤ 0.9] 

We can use this equivalence to rewrite the expected profit as: 

𝐸[𝑝] = £4 ∗ (1 − Pr[𝑋 ≤ 0.9]) − 2£ ∗ Pr[𝑋 ≤ 0.9] 

Noting that Pr[𝑋 ≤ 𝑥] defines the probability that 𝑋 takes all values no bigger than 𝑥, we 

can use the PDF given in the question to get: 

𝐸[𝑝] = £4 ∗ (1 − ∫ 𝑒−𝑥
0.9

0

𝑑𝑥) − 2£ ∗ (∫ 𝑒−𝑥
0.9

0

𝑑𝑥) 

By acknowledging 
𝑑𝑒𝑓(𝑥)

𝑑𝑥
= 𝑒𝑓(𝑥) ∗ 𝑓′(𝑥) and −1 =

𝑑(−𝑥)

𝑑𝑥
, we can see that the following 

rule holds true: −𝑒−𝑥 =
𝑑𝑒−𝑥

𝑑𝑥
. Hence,  

  

𝐸[𝑝] = £4 ∗ (1 − [−𝑒−𝑥]𝟎
𝟎.𝟗) − 2£ ∗ [−𝑒−𝑥]𝟎

𝟎.𝟗 

Applying the first Fundamental Theorem of Calculus, we get: 

𝐸[𝑝] = £4 ∗ (1 − {[−𝑒−𝟎.𝟗] − [−𝑒−𝟎]}) − 2£ ∗ {[−𝑒−𝟎.𝟗] − [−𝑒−𝟎]} 

As 𝑒−0 =
1

𝑒0
=

1

1
= 1, and 𝑒−0.9 =

1

𝑒0.9
=

1

2.4596
= 0.4066, the previous equation 

collapses to: 

𝐸[𝑝] = £4 ∗ (1 − {−0.4066 + 1}) − 2£ ∗ {−0.4066 + 1} 

As −0.4066 + 1 = 0.5934, we get: 

𝐸[𝑝] = £4 ∗ (1 − (0.5934)) − 2£ ∗ (0.5934) = −£4 ∗ (0.4066) − £2 ∗ (0.5934) = £0.4394 

 

 

Answer: Hence, the manufacturer’s expected profit per item is £𝟎. 𝟒𝟑𝟗𝟒 
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Question 3. Let the RV 𝑿 have PDF 

 

𝒇(𝒙) = 𝟏 − |𝒙| ,       − 𝟏 ≤ 𝑿 ≤ 𝟏, 

 

Where |𝒙| denotes the absolute value of 𝒙. Find both𝑬[𝑿] and 𝑽[𝑿]. 

The absolute value function always reports a positive value, regardless of the sign of the 

original input. It is more intuitive to see it as a way to measure distance from the origin. 

Whenever the original input is positive the absolute value functions keeps the output the 

same as the input. However, if the original input is negative the absolute value function 

transforms the negative input into a positive input of the same magnitude. In order to 

transform a negative number into a positive one, we can use the rule −(−𝑥) = 𝑥. Thus, 

we can rewrite the absolute value function in the following way: 

|𝑥| = {
𝑥 𝑖𝑓 𝑥 ≥ 0
−𝑥 𝑖𝑓 𝑥 ≤ 0

 

As 𝑋 can take both positive and negative values, the PDF will vary according to the sign 

of 𝑋. More specifically, 𝑓(𝑥) = 1 − 𝑥 𝑖𝑓 𝑥 ≥ 0 and 𝑓(𝑥) = 1 − (−𝑥) = 1 + 𝑥 𝑖𝑓 𝑥 ≤

0. We will use this later on. At the moment, let’s just write the expected value of 𝑋: 

𝐸[𝑋] = ∫𝑥 ∗ (1 − |𝑥|)

1

−1

𝑑𝑥 

From the rules of calculus, we know that: 

∫𝑓(𝑥)

𝑎

𝑐

𝑑𝑥 = ∫𝑓(𝑥)

𝑎

𝑏

𝑑𝑥 + ∫𝑓(𝑥)

𝑏

𝑐

𝑑𝑥 

Hence, it follows that: 

  

𝐸[𝑋] = ∫𝑥 ∗ (1 − |𝑥|)

1

−1

𝑑𝑥 = ∫𝑥 ∗ (1 − |𝑥|)

0

−1

𝑑𝑥 + ∫𝑥 ∗ (1 − |𝑥|)

1

0

𝑑𝑥 
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Noticing that 𝑋 takes negative values in ∫ 𝑥 ∗ (1 − |𝑥|)
0

−1
𝑑𝑥 and positive values in 

∫ 𝑥 ∗ (1 − |𝑥|)
1

0
𝑑𝑥, we can substitute (1 − |𝑥|) by the two rules commented earlier to 

get: 

𝐸[𝑋] = ∫𝑥 ∗ (1 + 𝑥)

0

−1

𝑑𝑥 + ∫𝑥 ∗ (1 − 𝑥)

1

0

𝑑𝑥 

Once we have gotten rid of the absolute value function, the calculations are 

straightforward and resemble the ones in previous exercises. Expanding the terms inside 

the integrals, we get: 

𝐸[𝑋] = ∫𝑥 + 𝑥2
0

−1

𝑑𝑥 + ∫𝑥 − 𝑥2
1

0

𝑑𝑥 

Solving the integral, we get: 

𝐸[𝑋] = [
𝑥2

2
+
𝑥3

3
]
−𝟏

𝟎

+ [
𝑥2

2
−
𝑥3

3
]
𝟎

𝟏

 

Applying the First fundamental Theorem of Calculus, we get: 

𝐸[𝑋] = [
𝟎2

2
+
𝟎3

3
] − [+

(−𝟏)2

2
+
(−𝟏)3

3
] + [

𝟏2

2
−
𝟏3

3
] − [

𝟎2

2
−
𝟎3

3
] 

Which, when simplifying, is equivalent to: 

𝐸[𝑋] = − [
1

2
−
1

3
] + [

1

2
−
1

3
] = − [

3

6
−
2

6
] + [

3

6
−
2

6
] =

1

6
−
1

6
= 0 

We know that the variance is equal to the square of the expected value around its mean. 

More formally,  

𝑉[𝑋] = 𝐸[(𝑋 − 𝐸[𝑋])2] 

However, as we know that 𝐸[𝑋] = 0, the former expression becomes:  

𝑉[𝑋] = 𝐸[(𝑋 − 0)2] = 𝐸[𝑋2] 

From the lecture notes, we know that we can rewrite such an expression as: 
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𝑉[𝑋] = 𝐸[𝑋2] = ∫𝑥2𝑓(𝑥)

1

−1

𝑑𝑥 = ∫𝑥2(1 − |𝑥|)

1

−1

𝑑𝑥 

We deal with the absolute value in the same manner as before. Hence, our expression for 

the variance becomes: 

𝑉[𝑋] = ∫𝑥2(1 + 𝑥)

0

−1

𝑑𝑥 + ∫𝑥2(1 − 𝑥)

1

0

𝑑𝑥 

Expanding the inside of the integrals, we get: 

𝑉[𝑋] = ∫
𝑥2

2
+
𝑥3

3

0

−1

𝑑𝑥 + ∫𝑥2 −
𝑥3

3

1

0

𝑑𝑥 

Using the rules of calculus, we can solve the two integrals to get the following expression: 

𝑉[𝑋] = [
𝑥3

3
+
𝑥4

4
]
−𝟏

𝟎

+ [
𝑥3

3
−
𝑥4

4
]
𝟎

𝟏

 

Using the First Fundamental Theorem of Calculus, we get: 

𝑉[𝑋] = [
𝟎3

3
+
𝟎4

4
] − [

(−𝟏)3

3
+
(−𝟏)4

4
] + [

𝟏3

3
−
𝟏4

4
] − [

𝟎3

3
−
𝟎4

4
] 

Which, when simplifying, yields: 

𝑉[𝑋] = [
1

3
−
1

4
] + [

1

3
−
1

4
] = [

2

3
−
2

4
] =

8

12
−
6

12
=
2

12
=
1

6
 

 

 

 

Answer: 𝑬[𝑿] = 𝟎 and 𝑽[𝑿] =
𝟏

𝟔
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Question 4. Let 𝒑 (which is a RV) be the price of a good such that 𝒑 ~ 𝑼[𝟎, 𝟏𝟎]. The 

supply level 𝒔 of the good is related to the price via, 

 

𝒔 = 𝟎. 𝟎𝟎𝟑𝒑𝟐. 

 

Find the expected supply level both, 

 

i) Directly 

In order to find the expected supply level, we need to calculate the expected value of the 

variable 𝑠. Using the rules of expectations, we can write it as: 

𝐸[𝑠] = 𝐸[0.003𝑝2] = 0.003𝐸[𝑝2] = 0.003∫ 𝑝2𝑓(𝑝)

10

0

𝑑𝑝 

We are told that variable 𝑝 follows a uniform distribution between 0 and 10. The PDF of 

a uniform distribution is given by the following equation: 

𝑓(𝑝) =
1

𝑏 − 𝑎
 

Where 𝑏 and 𝑎 are, respectively, the highest and the lowest value that 𝑝 can take. In our 

case, then, the PDF of 𝑝 is given by the following equation: 

𝑓(𝑝) =
1

10 − 0
=
1

10
 

Substituting this value in the equation that describes the expected value of 𝑠, we get: 

𝐸[𝑠] = 0.003∫ 𝑝2
1

10

10

0

𝑑𝑝 =
0.003

10
∫ 𝑝2
10

0

𝑑𝑝 

Solving the integral, we get: 

𝐸[𝑠] = 0.0003 [
𝑝3

3
]
𝟎

𝟏𝟎

 

Applying the First Fundamental Theorem of Calculus, we get: 
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𝐸[𝑠] = 0.0003 [
𝟏𝟎3

3
−
𝟎3

3
] 

Which, if simplifying, is equivalent to: 

𝐸[𝑠] = 0.0003
1000

3
=
0.3

3
= 0.1 

 

ii) By first determining the distribution of 𝒔 

Theorem 3 in section 2.6 of the lecture notes states the following. Given that the PDF of 

𝑋 is 𝑓(𝑥), then the PDF of 𝑌 = ℎ(𝑋) can be found by using the following formula: 

𝑔(𝑦) = 𝑓(𝑥) ∗ |
𝑑𝑥

𝑑𝑦
| 

Put simply, whenever we do not know the PDF of the variable 𝑌 but we do know that 

variable 𝑌 depends on 𝑋, we can work out the PDF of 𝑌 given the PDF of 𝑋 and 𝑋 itself. 

In our case, we want to first determine the distribution of 𝑠 and, afterwards, compute the 

PDF of 𝑠. Recalling that 𝑠 = 0.003𝑝2, we can write 𝑝 in terms of 𝑠: 

𝑝 = (
𝑠

0.003
)

1
2
 

As well, from the previous section we know that, given that 𝑝 is a RV following a uniform 

distribution between 0 and 10, the PDF of 𝑝 is given by: 

𝑓(𝑝) =
1

10
 

Given the two previous equations, we can rewrite the formula given by theorem 3 in terms 

of 𝑝 and 𝑠: 

𝑔(𝑠) = 𝑓(𝑝) ∗ |
𝑑𝑝

𝑑𝑠
| 

Given that we have explicitly written 𝑝 in terms of 𝑠 before, we can directly compute 
𝑑𝑝

𝑑𝑠
: 

𝑑𝑝

𝑑𝑠
=
1

2
∗ (

𝑠

0.003
)
−
1
2
∗

1

0.003
 

Which, after simplifying, becomes: 
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𝑑𝑝

𝑑𝑠
=

1

0.006
∗ (

𝑠

0.003
)
−
1
2
 

Noting that 𝑥−𝑎 =
1

𝑥𝑎
, we can rewrite the previous expression as: 

𝑑𝑝

𝑑𝑠
=

1

0.006
∗

1

(
𝑠

0.003)

1
2

=
1

0.006
∗

1

𝑠
1
2

0.003
1
2

=
0.003

1
2

0.006
∗
1

𝑠
1
2

=
0.003

1
2

0.006
∗ 𝑠−

1
2 

Substituting the previous result into 𝑔(𝑠), we get: 

𝑔(𝑠) =
1

10
|
0.003

1
2

0.006
∗ 𝑠−

1
2| 

As 𝑝 has to lie within 0 and 10 and 𝑝 = (
𝑠

0.003
)

1

2
=

√𝑠

0.003
1
2

, then 𝑠 is bounded to be positive. 

In practical terms, this implies that the absolute value will not change the function. Hence, 

we can rewrite 𝑔(𝑠) as: 

𝑔(𝑠) =
1

10
∗
0.003

1
2

0.006
∗ 𝑠−

1
2 =

0.003
1
2

0.06
𝑠−

1
2 

Before start calculating the expected value of 𝑠, we need to show that 𝑔(𝑠) represents a 

valid PDF. To do that, the following rule has to hold true: 

∫𝑔(𝑠)

𝑥

0

𝑑𝑠 = ∫
0.003

1
2

0.06
𝑠−

1
2

𝑥

0

𝑑𝑠 = 1 

Which, operating, is shown to be equivalent to: 

∫𝑔(𝑠)

𝑥

0

𝑑𝑠 =
0.003

1
2

0.06
∫𝑠−

1
2

𝑥

0

𝑑𝑠 = 1 

Solving the integral, we get: 

∫𝑔(𝑠)

𝑥

0

𝑑𝑠 =
0.003

1
2

0.06
[
𝑠
1
2

1
2

]

0

𝒙

= 1 

Applying the First Fundamental Theorem of Calculus, we get: 
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∫𝑔(𝑠)

𝑥

0

𝑑𝑠 =
0.003

1
2

0.06
[
𝒙
1
2

1
2

−
𝟎
1
2

1
2

] = 1 

Which, when simplifying, is equivalent to: 

∫𝑔(𝑠)

𝑥

0

𝑑𝑠 =
0.003

1
2

0.06

𝑥
1
2

1
2

= 1 

Isolating 𝑥, we get: 

𝑥
1
2 =

1
2 ∗ 0.06

0.003
1
2

 

Squaring both sides yields: 

𝑥 =
0.062

22 ∗ 0.003
=
0.0036

0.012
= 0.3 

Hence, for 𝑔(𝑠)to be a valid PDF, then 0 ≤ 𝑠 ≤ 0.3 has to hold true. Knowing this fact, 

we can now write the expected value of 𝑠 as: 

𝐸[𝑠] = ∫ 𝑠𝑔(𝑠)

0.3

0

𝑑𝑠 = ∫ 𝑠
0.003

1
2

0.06
𝑠−

1
2

0.3

0

𝑑𝑠 = ∫
0.003

1
2

0.06
𝑠
1
2

0.3

0

𝑑𝑠 =
0.003

1
2

0.06
∫ 𝑠

1
2

0.3

0

𝑑𝑠 

Solving the integral, we get: 

𝐸[𝑠] =
0.003

1
2

0.06
[
𝑠
3
2

3
2

]

𝟎

𝟎.𝟑

 

Applying the First fundamental Theorem of Calculus, we get: 

𝐸[𝑠] =
0.003

1
2

0.06
[
𝟎. 𝟑

3
2

3
2

−
𝟎
3
2

3
2

] =
0.003

1
2

0.06

0.3
3
2

3
2

=
2

3
∗
0.003

1
2

0.006
∗ 0.3

3
2 = 0.1 

Answer: 𝑬[𝒔] = 𝟎. 𝟏 
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Question 1. Let 𝒛𝟏, 𝒛𝟐, … , 𝒛𝒏 be a sequence of independent normal (IN) RVs having means 

𝝁𝒊 and variances 𝝈𝒊
𝟐, for 𝒊 = 𝟏,… , 𝒏. Deduce that the RV 

 

𝑸 =∑
(𝒛𝒊 − 𝝁𝒊)

𝟐

𝝈𝒊
𝟐

𝒏

𝒊=𝟏

 

 

Has a 𝝌(𝒏)
𝟐  distribution. 

By the definition of a Chi-Square Distribution of section 3.2 in the lecture notes, we know that 

the sum of several independent standardised squared normal RVs follows a Chi-Square 

Distribution with 𝑛 degrees of freedom. More formally, if 𝑋𝑖~𝑁(0,1) for 𝑖 = 1,… , 𝑛, then it 

follows that: 

𝑄~𝑋(𝑛)
2 , 𝑤ℎ𝑒𝑟𝑒 𝑄 =∑𝑋𝑖

2

𝑛

𝑖=1

 

In order to deduce that the RV 𝑄 has a 𝑋(𝑛)
2  distribution, we need to demonstrate that each 

element within the summation is just the square of a Normal Distribution with mean 0 and 

variance1. Namely, that each RV of the type 𝑋𝑖 follows a standardised Normal Distribution. 

The first step is to rewrite the summation in the following way: 

𝑄 =∑
(𝑧𝑖 − 𝜇𝑖)

2

𝜎𝑖
2

𝑛

𝑖=1

=∑(
𝑧𝑖 − 𝜇𝑖
𝜎𝑖

)
2

𝑛

𝑖=1

 

The second step is to note that each element within the summation is just a transformation of 

the 𝑧𝑖 random variables described in the questions. To make the notation consistent, let us name 

the transformed RV in the following way: 

𝑋𝑖 =
𝑧𝑖 − 𝜇𝑖
𝜎𝑖

 

Hence, we can rewrite 𝑄 by substituting each element within the summation by 𝑋𝑖: 

𝑄 =∑(
𝑧𝑖 − 𝜇𝑖
𝜎𝑖

)
2

𝑛

𝑖=1

=∑(𝑋𝑖)
2

𝑛

𝑖=1
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Now, it should be easier to see that in order for the definition of the section 3.2 to apply, we 

need to demonstrate that the RVs 𝑋𝑖 follow a normal distribution with mean 0 and variance 1. 

In order to do that, we use the rules of expectations and the knowledge that 𝐸[𝑧𝑖] = 𝜇𝑖 and 

𝑉[𝑧𝑖] = 𝜎𝑖
2. 

First, let us write the expected value of 𝑋𝑖 as: 

𝐸[𝑋𝑖] = 𝐸 [
𝑧𝑖 − 𝜇𝑖
𝜎𝑖

] 

We can divide what lies within the expectation into two elements: 

𝐸[𝑋𝑖] = 𝐸 [
𝑧𝑖 − 𝜇𝑖
𝜎𝑖

] = 𝐸 [
𝑧𝑖
𝜎𝑖
−
𝜇𝑖
𝜎𝑖
] 

By the rules of expectations, we know that the expected value of a constant is the constant itself 

(𝐸[𝑏] = 𝑏) and that the expected value of a RV times a constant is the constant times the 

expected value of the RV (𝐸[𝑎𝑋𝑖] = 𝑎𝐸[𝑋𝑖]). Together, these two rules imply: 

𝐸[𝑋𝑖] = 𝐸 [
𝑧𝑖
𝜎𝑖
−
𝜇𝑖
𝜎𝑖
] =

1

𝜎𝑖
𝐸[𝑧𝑖] −

𝜇𝑖
𝜎𝑖

 

Where 
1

𝜎𝑖
= 𝑎 and 

𝜇𝑖

𝜎𝑖
= 𝑏, using the notation of the aforementioned rules. As the question states 

that the expected value of the RV 𝐸[𝑧𝑖] = 𝜇𝑖, we can substitute that in the previous equation 

to get: 

𝐸[𝑋𝑖] =
𝜇𝑖
𝜎𝑖
−
𝜇𝑖
𝜎𝑖
= 0 

Hence, the first condition for the definition in section 3.2 to apply is satisfied. Now, let us write 

the variance of 𝑋𝑖 as: 

𝑉[𝑋𝑖] = 𝐸[(𝑋𝑖 − 𝐸[𝑋𝑖])
2] 

As we have just previously found that 𝐸[𝑋𝑖] = 0, we can substitute that in the previous 

equation to get: 

𝑉[𝑋𝑖] = 𝐸[(𝑋𝑖 − 0)
2] = 𝐸[𝑋𝑖

2] 

Hence, we need to demonstrate now that 𝑉[𝑋𝑖] = 1. For that, let us rewrite the previous 

expression as: 
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𝑉[𝑋𝑖] = 𝐸[𝑋𝑖
2] = 𝐸 [(

𝑧𝑖 − 𝜇𝑖
𝜎𝑖

)
2

] = 𝐸 [(
𝑧𝑖
𝜎𝑖
−
𝜇𝑖
𝜎𝑖
)
2

] 

Expanding the expression within the brackets, we get: 

𝑉[𝑋𝑖] = 𝐸 [(
𝑧𝑖
𝜎𝑖
−
𝜇𝑖
𝜎𝑖
)
2

] = 𝐸 [(
𝑧𝑖
𝜎𝑖
)
2

+ (
𝜇𝑖
𝜎𝑖
)
2

− 2𝑧𝑖𝜇𝑖] = 𝐸 [
𝑧𝑖
2

𝜎𝑖
2 +

𝜇𝑖
2

𝜎𝑖
2 − 2

𝑧𝑖
𝜎𝑖

𝜇𝑖
𝜎𝑖
] 

As 
1

𝜎𝑖
2, 2

𝜇𝑖

𝜎𝑖
2 and 

𝜇𝑖
2

𝜎𝑖
2 are constants, and applying the rules mentioned before, the previous 

expression is equivalent to: 

  

𝑉[𝑋𝑖] = 𝐸 [
𝑧𝑖
2

𝜎𝑖
2 +

𝜇𝑖
2

𝜎𝑖
2 − 2

𝑧𝑖𝜇𝑖

𝜎𝑖
2 ] =

1

𝜎𝑖
2 𝐸[𝑧𝑖

2] +
𝜇𝑖
2

𝜎𝑖
2 − 2

𝜇𝑖

𝜎𝑖
2 𝐸[𝑧𝑖] 

As 𝐸[𝑧𝑖] = 𝜇𝑖, the previous equation becomes: 

𝑉[𝑋𝑖] =
1

𝜎𝑖
2 𝐸[𝑧𝑖

2] +
𝜇𝑖
2

𝜎𝑖
2 − 2

𝜇𝑖

𝜎𝑖
2 𝜇𝑖 =

1

𝜎𝑖
2 𝐸[𝑧𝑖

2] +
𝜇𝑖
2

𝜎𝑖
2 − 2

𝜇𝑖
2

𝜎𝑖
2 

Simplifying, we get: 

𝑉[𝑋𝑖] =
1

𝜎𝑖
2 𝐸[𝑧𝑖

2] −
𝜇𝑖
2

𝜎𝑖
2 

At the moment, 𝐸[𝑧𝑖
2] is unknown to us. However, recall that we know that 𝑧𝑖~𝑁(𝜇𝑖, 𝜎𝑖

2). 

Hence, it must be that: 

𝑉[𝑧𝑖] = 𝜎𝑖
2 

Substituting 𝑉[𝑧𝑖] by the generic formula, we get: 

𝑉[𝑧𝑖] = 𝐸[(𝑧𝑖 − 𝐸[𝑧𝑖])
2] = 𝜎𝑖

2 

As the question states that 𝐸[𝑧𝑖] = 𝜇𝑖, when substituting such equivalence in the previous 

equation we get: 

𝑉[𝑧𝑖] = 𝐸[(𝑧𝑖 − 𝜇𝑖)
2] = 𝜎𝑖

2 

Expanding the parenthesis, we get: 

𝑉[𝑧𝑖] = 𝐸[(𝑧𝑖 − 𝜇𝑖)
2] = 𝐸[𝑧𝑖

2 + 𝜇𝑖
2 − 2𝑧𝑖𝜇𝑖] = 𝜎𝑖

2 
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By noticing that 𝜇𝑖
2 and 2𝜇𝑖 are constants, and applying the aforementioned rules of 

expectations, we get: 

𝑉[𝑧𝑖] = 𝐸[𝑧𝑖
2 + 𝜇𝑖

2 − 2𝑧𝑖𝜇𝑖] = 𝐸[𝑧𝑖
2] + 𝜇𝑖

2 − 2𝜇𝑖𝐸[𝑧𝑖] = 𝜎𝑖
2 

By substituting 𝐸[𝑧𝑖] = 𝜇𝑖 – which the question states – in the previous equation, we get: 

𝑉[𝑧𝑖] = 𝐸[𝑧𝑖
2] + 𝜇𝑖

2 − 2𝜇𝑖𝐸[𝑧𝑖] = 𝐸[𝑧𝑖
2] + 𝜇𝑖

2 − 2𝜇𝑖𝜇𝑖 = 𝜎𝑖
2 

Simplifying, we get: 

𝑉[𝑧𝑖] = 𝐸[𝑧𝑖
2] + 𝜇𝑖

2 − 2𝜇𝑖𝜇𝑖 = 𝐸[𝑧𝑖
2] + 𝜇𝑖

2 − 2𝜇𝑖
2 = 𝜎𝑖

2 

Which is equivalent to: 

𝑉[𝑧𝑖] = 𝐸[𝑧𝑖
2] + 𝜇𝑖

2 − 2𝜇𝑖
2 = 𝐸[𝑧𝑖

2] − 𝜇𝑖
2 = 𝜎𝑖

2 

By isolating 𝐸[𝑧𝑖
2], which was the unknown of the simplified expression of 𝑉[𝑋𝑖], we get: 

𝐸[𝑧𝑖
2] = 𝜎𝑖

2 + 𝜇𝑖
2 

Recall the formula we got for 𝑉[𝑋𝑖] was: 

𝑉[𝑋𝑖] =
1

𝜎𝑖
2 𝐸[𝑧𝑖

2] −
𝜇𝑖
2

𝜎𝑖
2 

Substituting the formula for 𝐸[𝑧𝑖
2] in 𝑉[𝑋𝑖], we get: 

𝑉[𝑋𝑖] =
1

𝜎𝑖
2 𝐸[𝑧𝑖

2] −
𝜇𝑖
2

𝜎𝑖
2 =

1

𝜎𝑖
2
(𝜎𝑖

2 + 𝜇𝑖
2) −

𝜇𝑖
2

𝜎𝑖
2 

By expanding the first term, we get: 

𝑉[𝑋𝑖] =
1

𝜎𝑖
2 𝜎𝑖

2 +
1

𝜎𝑖
2 𝜇𝑖

2 −
𝜇𝑖
2

𝜎𝑖
2 

Which is equivalent to: 

𝑉[𝑋𝑖] =
𝜎𝑖
2

𝜎𝑖
2 +

𝜇𝑖
2

𝜎𝑖
2 −

𝜇𝑖
2

𝜎𝑖
2 

As 
𝜎𝑖
2

𝜎𝑖
2 = 1 and 

𝜇𝑖
2

𝜎𝑖
2 −

𝜇𝑖
2

𝜎𝑖
2 = 0, the previous expression collapses to: 

𝑉[𝑋𝑖] = 1 
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Hence, we have demonstrated that, given that the RV 𝑧𝑖~𝑁(𝜇𝑖, 𝜎𝑖
2), then the standardised RV 

𝑋𝑖 =
𝑧𝑖−𝜇𝑖

𝜎𝑖
~𝑁(0,1). Hence, the definition in section 3.2 of the lecture note applies and the RV 

𝑄 as defined in the question follows a Chi-Square Distribution with 𝑛 degrees of freedom; 

where 𝑛 is the number of standardised RVs of the type 𝑧𝑖.  
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Question 2. If 𝒄 is a constant then demonstrate that, 

 

i) 𝑽[𝑿 + 𝒄] = 𝑽[𝑿] 

The generic formula for𝐸[𝑋] is: 

𝐸[𝑋] = ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

−∞

 

Hence, we can write the expected value of 𝑋 + 𝑐  as: 

𝐸[𝑋 + 𝑐] = ∫(𝑥 + 𝑐)𝑓(𝑥)𝑑𝑥

∞

−∞

 

Expanding the parenthesis, we get: 

𝐸[𝑋 + 𝑐] = ∫[𝑥𝑓(𝑥) + 𝑐𝑓(𝑥)]𝑑𝑥

∞

−∞

 

Using the rules of calculus (more specifically, the fact that ∫ (𝑓(𝑥) + 𝑔(𝑥))𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 +

∫ 𝑔(𝑥)𝑑𝑥), we get: 

𝐸[𝑋 + 𝑐] = ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

−∞

+ ∫ 𝑐𝑓(𝑥)𝑑𝑥

∞

−∞

 

As 𝑐 is just a constant, we can take it out of the second integral to get: 

𝐸[𝑋 + 𝑐] = ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

−∞

+ 𝑐 ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞

 

As ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
= 1 for 𝑓(𝑥) to be a valid PDF, we can substitute the second integral by 1 in 

order to get: 

𝐸[𝑋 + 𝑐] = ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

−∞

+ 𝑐 

Substituting 𝐸[𝑋] = ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

−∞
 in the previous equation, we get:  
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𝐸[𝑋 + 𝑐] = 𝐸[𝑋] + 𝑐 

Now, we can make use of the following generic formula: 

𝑉[𝑋] = 𝐸[(𝑋 − 𝐸[𝑋])2] 

And substitute 𝑋 by 𝑋 + 𝑐 and 𝐸[𝑋 + 𝑐] by the expression we get above to get: 

𝑉[𝑋 + 𝑐] = 𝐸[(𝑋 − 𝐸[𝑋 + 𝑐])2] = 𝐸 [(𝑋 + 𝑐 − (𝐸[𝑋] + 𝑐))
2
] 

Expanding the expression within the parenthesis, we get: 

𝑉[𝑋 + 𝑐] = 𝐸[(𝑋 + 𝑐 − 𝐸[𝑋] − 𝑐)2] 

The 𝑐’s cancel out, yielding the following expression: 

𝑉[𝑋 + 𝑐] = 𝐸[(𝑋 − 𝐸[𝑋])2] = 𝑉[𝑋] 

Hence, as shown, the variance of the RVs 𝑋 and 𝑋 + 𝑐 are identical. 

 

ii) 𝑽[𝒄𝑿] = 𝒄𝟐𝑽[𝑿] 

Using the general formula for the variance of a RV, we can write the variance of 𝑐𝑋 as: 

𝑉[𝑐𝑋] = 𝐸[(𝑐𝑋 − 𝐸[𝑐𝑋])2] 

Using the formula for the expectation of an RV, we can write the expectation of the RV 𝑐𝑋 as: 

𝐸[𝑐𝑋] = ∫ 𝑐𝑋𝑓(𝑋)𝑑𝑥

∞

−∞

 

As 𝑐 is a constant, we can take it out of the integral to get: 

𝐸[𝑐𝑋] = 𝑐 ∫ 𝑋𝑓(𝑋)𝑑𝑥

∞

−∞

= 𝑐𝐸[𝑋] 

Substituting for the expression of 𝐸[𝑐𝑋] found above, we can rewrite the variance of 𝑐𝑋 as: 

𝑉[𝑐𝑋] = 𝐸[(𝑐𝑋 − 𝐸[𝑐𝑋])2] = 𝐸[(𝑐𝑋 − 𝑐𝐸[𝑋])2] 

By using 𝑐 as a common factor, we can rewrite the previous expression as: 

𝑉[𝑐𝑋] = 𝐸[(𝑐𝑋 − 𝐸[𝑐𝑋])2] = 𝐸 [(𝑐(𝑋 − 𝐸[𝑋]))
2
] 
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By the rules of calculus, we know that (𝑐𝑓(𝑥))
2
= 𝑐2𝑓(𝑥)2. Hence, we can rewrite the 

previous expression as: 

𝑉[𝑐𝑋] = 𝐸[(𝑐𝑋 − 𝐸[𝑐𝑋])2] = 𝐸[𝑐2(𝑋 − 𝐸[𝑋])2] 

Because of the expression we found above for 𝐸[𝑐𝑋], we can deduce that, as 𝑐2 is a constant, 

then it can be taken out of the expectation: 

𝑉[𝑐𝑋] = 𝐸[𝑐2(𝑋 − 𝐸[𝑋])2] = 𝑐2𝐸[(𝑋 − 𝐸[𝑋])2] = 𝑐2𝑉[𝑋] 

It, then, follows that 𝑉[𝑐𝑋] = 𝑐2𝑉[𝑋]. 
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Question 3. Show that if 𝑿 is a RV having a PDF which is symmetric around 𝒙 = 𝟎 then 

𝑬[𝑿] = 𝟎. Extend this analysis to the case where 𝒇(𝒙) is symmetric around 𝒙 = 𝒂 to show 

then that 𝑬[𝑿] = 𝒂. 

 

A PDF of the RV 𝑋 is defined generically as 𝑓(𝑥). It follows, then, that for the RV 𝑋 to be 

symmetric then the equivalence 𝑓(𝑥) = 𝑓(−𝑥) has to hold true. As we want to calculate the 

expectation of the RV 𝑋, let us write the generic formula below: 

𝐸[𝑋] = ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

−∞

 

Using the rules of calculus, we can rewrite it as: 

𝐸[𝑋] = ∫𝑥𝑓(𝑥)𝑑𝑥

0

−∞

+∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

0

 

As we do not know the functional form of 𝑓(𝑥), we cannot solve the integrals above. However, 

to make the expectation 0 it will suffice to show that, for any generic function 𝑓(𝑥), the first 

and the second integral are equal in magnitude but opposite in sign. To see this, we can apply 

the rule stating that ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 = −∫ 𝑓(𝑥)

𝑎

𝑏
𝑑𝑥2 to the second integral to get: 

𝐸[𝑋] = ∫𝑥𝑓(𝑥)𝑑𝑥

0

−∞

− ∫𝑥𝑓(𝑥)𝑑𝑥

0

∞

 

Now, we subsequently apply the rule stating that ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 = ∫ 𝑓(−𝑥)(−

−𝑏

−𝑎
𝑑𝑥)3 to the 

second integral to get: 

                                           
2 To see this, and assuming that 𝐹(𝑥) is the generic solution to the proposed integral, we can apply the First 

Fundamental Theorem of Calculus to both sides to get the following expression: 

𝐹(𝑏) − 𝐹(𝑎) = −[𝐹(𝑎) − 𝐹(𝑏)] 
Which, after expanding the brackets of the right hand side, becomes: 

𝐹(𝑏) − 𝐹(𝑎) = −𝐹(𝑎) − (−𝐹(𝑏)) = −𝐹(𝑎) + 𝐹(𝑏) 
3 Following the previous footnote, and applying the first Fundamental Theorem of Calculus to each of the hand 

sides of the stated rule, we get: 

∫𝑓(𝑥)

𝑏

𝑎

𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎) 

∫ 𝑓(−𝑥)

−𝑏

−𝑎

(−𝑑𝑥) = 𝐹(−(−𝑏)) − 𝐹(−(−𝑎)) = 𝐹(𝑏) − 𝐹(𝑎) 
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𝐸[𝑋] = ∫𝑥𝑓(𝑥)𝑑𝑥

0

−∞

− ∫(−𝑥)𝑓(−𝑥)(−𝑑𝑥)

0

−∞

 

As 𝑓(𝑥) = 𝑓(−𝑥) by symmetry, and (−𝑥)(−𝑑𝑥) = (−1)(𝑥)(−1)(𝑑𝑥) = 𝑥𝑑𝑥, we can 

rewrite the previous expression as: 

𝐸[𝑋] = ∫𝑥𝑓(𝑥)𝑑𝑥

0

−∞

− ∫(𝑥)𝑓(𝑥)(𝑑𝑥)

0

−∞

= 0 

In order to generalise the results to a function symmetric around 𝑎, we first need to note that 

𝑓(𝑥 − 𝑎) = 𝑓(−(𝑥 − 𝑎)). By imposing a new RV 𝑍 to be defined as 𝑍 = 𝑋 − 𝑎, and applying 

the rules of expectations, we know that: 

𝐸[𝑍] = 𝐸[𝑋 − 𝑎] = 𝐸[𝑋] − 𝑎 

Since now the function is symmetric around 𝑧 = 𝑥 − 𝑎 and not around 𝑥, this implies that, 

now, 𝑓(𝑥 − 𝑎) = 𝑓(𝑧) = 𝑓(−(𝑥 − 𝑎)) = 𝑓(−𝑧). Hence, the argument constructed before can 

now apply for 𝑧: 

𝐸[𝑍] = ∫𝑧𝑓(𝑧)𝑑𝑧

0

−∞

+∫ 𝑧𝑓(𝑧)𝑑𝑧

∞

0

 

Which, applying all the rules mentioned before, becomes: 

𝐸[𝑍] = ∫𝑧𝑓(𝑧)𝑑𝑧

0

−∞

− ∫(𝑧)𝑓(𝑧)(𝑑𝑧)

0

−∞

= 0 

Substituting this in the expression for the expectation of the RV 𝑍, we get: 

𝐸[𝑍] = 0 = 𝐸[𝑋] − 𝑎 

By isolating 𝐸[𝑋], we finally get: 

  

0 + 𝑎 = 𝐸[𝑋] = 𝑎 
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Question 4. Show that  

 

∑(𝒙𝒊 − �̅�)
𝟐 =

𝒏

𝒊=𝟏

∑𝒙𝒊
𝟐

𝒏

𝒊=𝟏

− 𝒏�̅�𝟐, 

 

Where �̅� =
𝟏

𝒏
∑ 𝒙𝒊
𝒏
𝒊=𝟏 . 

To show that the stated equivalence holds, we first expand the left hand side of the equation to 

get: 

∑(𝑥𝑖 − �̅�)
2 =

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

+∑�̅�2
𝑛

𝑖=1

− 2 ∗∑𝑥𝑖�̅�

𝑛

𝑖=1

 

As �̅� is a constant, we can bring it out of the summation in the third element of the previous 

equation to get4: 

∑(𝑥𝑖 − �̅�)
2 =

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

+∑�̅�2
𝑛

𝑖=1

− 2�̅� ∗∑𝑥𝑖

𝑛

𝑖=1

 

Additionally, �̅�2 is a constant as well. Hence, summing �̅�2 𝑛 times yields �̅�25 : 

∑(𝑥𝑖 − �̅�)
2 =

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

+ 𝑛�̅�2 − 2�̅� ∗∑𝑥𝑖

𝑛

𝑖=1

 

Using the formula for �̅� provided in the question (�̅� =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 ), we can isolate ∑ 𝑥𝑖

𝑛
𝑖=1  to get: 

∑ 𝑥𝑖
𝑛

𝑖=1
= 𝑛 ∗ �̅� 

Substituting this expression in the previous formula, we get: 

∑(𝑥𝑖 − �̅�)
2 =

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

+ 𝑛�̅�2 − 2�̅� ∗ 𝑛 ∗ �̅� 

                                           
4 To see this, note that ∑ 𝑥𝑖 �̅�

𝑛
𝑖=1  can be rewritten as 𝑥1�̅� + 𝑥2�̅� + ⋯+ 𝑥𝑛�̅�. Taking �̅� as a common factor, we get: 

�̅�(𝑥1 + 𝑥2 +⋯+ 𝑥𝑛) = �̅� ∑ 𝑥𝑖
𝑛
𝑖=1  

5 To see this, note that ∑ �̅�𝑛
𝑖=1

2
 can be rewritten as �̅�2 + �̅�2 +⋯+ �̅�2. Using �̅�2 as a common factor, this 

expression is equivalent to �̅�2 ∗ (1 + 1 + ⋯+ 1). Noticing that �̅�2 was added 𝑛 times, this is equivalent to 𝑛�̅�2. 
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Which simplifies to: 

∑(𝑥𝑖 − �̅�)
2 =

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

+ 𝑛�̅�2 − 2𝑛 ∗ �̅�2 =∑𝑥𝑖
2

𝑛

𝑖=1

− 𝑛 ∗ �̅�2 
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Question 5. A RV 𝑿 has an exponential function if 

 

𝒇(𝒙) =
𝒆
−
𝒙
𝜷

𝜷
,        𝒙 > 𝟎. 

 

Determine the cumulative distribution function of 𝑿 and also find both 𝑬[𝑿] and 𝑽[𝑿]. 

Suppose 𝜷 = 𝟏𝟎𝟎, find the value 𝒄 such that  

 

𝐏𝐫[𝑿 ≥ 𝒄] =
𝟏

𝟐
. 

 

Determine the cumulative distribution function of 𝑿 

The Cumulative Distribution function (CDF for short) of a RV 𝑋 is to be defined as: 

𝑃𝑟[𝑋 ≤ 𝑧] = ∫𝑓(𝑥)𝑑𝑥

𝑧

−∞

 

Given that the lower bound of the RV 𝑋 is 0 and the 𝑓(𝑥) described in the question, the CDF 

of 𝑋 is: 

𝑃𝑟[𝑋 ≤ 𝑧] = ∫
𝑒
−
𝑥
𝛽

𝛽
𝑑𝑥

𝑧

0

 

We can also write it as follows 

𝑃𝑟[𝑋 ≤ 𝑧] = ∫(
1

𝛽
𝑒
−
𝑥
𝛽)𝑑𝑥

𝑧

0

 

We can substitute 1 = (−1) ∗ (−1) and take one of the −1’s outside of the integral to get: 

𝑃𝑟[𝑋 ≤ 𝑧] = (−1)∫((−1)
1

𝛽
𝑒
−
𝑥
𝛽)𝑑𝑥

𝑧

0

= −∫(−
1

𝛽
𝑒
−
𝑥
𝛽)𝑑𝑥

𝑧

0
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By noticing that −
1

𝛽
=

𝑑(−
𝑥

𝛽
)

𝑑𝑥
; and, hence, noticing that −

1

𝛽
𝑒
−
𝑥

𝛽 =
𝑑(𝑒

−
𝑥
𝛽)

𝑑𝑥
, the previous 

expression is equivalent to: 

𝑃𝑟[𝑋 ≤ 𝑧] = −∫(
𝑑 (𝑒

−
𝑥
𝛽)

𝑑𝑥
)𝑑𝑥

𝑧

0

 

Hence, using the rules of calculus (more specifically, the fact that ∫ 𝑓(𝑥)𝑑𝑥 = ∫
𝑑(𝐹(𝑥))

𝑑𝑥
𝑑𝑥 =

𝐹(𝑥) + 𝐶, the CDF is defined by the expression below: 

𝑃𝑟[𝑋 ≤ 𝑧] = − [𝑒
−
𝑥
𝛽]
0

𝑧

 

Using the First Fundamental Theorem of Calculus, we get: 

𝑃𝑟[𝑋 ≤ 𝑧] = −{[𝑒
−
𝑧
𝛽] − [𝑒

−
0
𝛽]} = 𝑒

−
0
𝛽 − 𝑒

−
𝑧
𝛽 

Using the rules of calculus (more specifically, noting that 𝑥−𝑎 =
1

𝑥𝑎
), the previous expression 

is equivalent to: 

𝑃𝑟[𝑋 ≤ 𝑧] =
1

𝑒
0
𝛽

− 𝑒
−
𝑧
𝛽 =

1

𝑒0
− 𝑒

−
𝑧
𝛽 = 1 − 𝑒

−
𝑧
𝛽 

Which describes the CDF of the RV 𝑋. 
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Determine the 𝑬[𝑿] 

Using the formula for the expectation of a random variable, we can write the expectation of 𝑋 

as: 

𝐸[𝑋] = ∫ 𝑥
𝑒
−
𝑥
𝛽

𝛽

∞

0

𝑑𝑥 

This integral needs to be solved using the technique known as integration by parts. Recalling 

the formula for integrating by parts 

∫ 𝑓(𝑥)𝑔′(𝑥)𝑑𝑥 = 𝑓(𝑥)𝑔(𝑥) − ∫ 𝑓′(𝑥)𝑔(𝑥)𝑑𝑥 

And setting 𝑓(𝑥) = 𝑥 and 𝑔′(𝑥) =
𝑒
−
𝑥
𝛽

𝛽
, the two remaining elements appearing in the previous 

expression are: 

𝑓′(𝑥) =
𝑑𝑓(𝑥)

𝑑𝑥
=
𝑑𝑥

𝑑𝑥
= 1 

𝑔(𝑥) = ∫ 𝑔′(𝑥)𝑑𝑥 = ∫
𝑒
−
𝑥
𝛽

𝛽
𝑑𝑥 = −∫−

1

𝛽
𝑒
−
𝑥
𝛽 𝑑𝑥 = −∫

𝑑 (𝑒
−
𝑥
𝛽)

𝑑𝑥
𝑑𝑥 = −𝑒

−
𝑥
𝛽 

Substituting 𝑓(𝑥), 𝑓′(𝑥), 𝑔(𝑥) and 𝑔′(𝑥), we get: 

𝐸[𝑋] = ∫ (𝑥
𝑒
−
𝑥
𝛽

𝛽
)𝑑𝑥

∞

0

= [−𝑥𝑒
−
𝑥
𝛽]
0

∞

−∫ (1 ∗ (−𝑒
−
𝑥
𝛽))𝑑𝑥

∞

0

 

Now, substituting 1 =
𝛽

𝛽
 within the integral in the right hand side, we get: 

  

𝐸[𝑋] = ∫ (𝑥
𝑒
−
𝑥
𝛽

𝛽
)𝑑𝑥

∞

0

= [−𝑥𝑒
−
𝑥
𝛽]
0

∞

−∫ (−
𝛽

𝛽
∗ 𝑒

−
𝑥
𝛽) 𝑑𝑥

∞

0

 

As both the numerator and denominator of 
𝛽

𝛽
 are constants, we can take whichever of them 

outside the integral. Hence, by taking the numerator outside of the integral of the right hand 

side, we get: 



48 

 

𝐸[𝑋] = ∫ (𝑥
𝑒
−
𝑥
𝛽

𝛽
)𝑑𝑥

∞

0

= [−𝑥𝑒
−
𝑥
𝛽]
0

∞

− 𝛽∫ (−
1

𝛽
∗ 𝑒

−
𝑥
𝛽)𝑑𝑥

∞

0

 

By noticing, as before, that −
1

𝛽
∗ 𝑒

−
𝑥

𝛽 =
𝑑(𝑒

−
𝑥
𝛽)

𝑑𝑥
, the solution to the integral of the right hand 

side can be calculated accordingly: 

𝐸[𝑋] = ∫ (𝑥
𝑒
−
𝑥
𝛽

𝛽
)𝑑𝑥

∞

0

= [−𝑥𝑒
−
𝑥
𝛽]
0

∞

− 𝛽 [𝑒
−
𝑥
𝛽]
0

∞

 

Applying the First Fundamental Theorem of Calculus, we get: 

𝐸[𝑋] = ∫ (𝑥
𝑒
−
𝑥
𝛽

𝛽
)𝑑𝑥

∞

0

= −∞𝑒
−
∞
𝛽 + 0𝑒

−
0
𝛽 − 𝛽 [𝑒

−
∞
𝛽 − 𝑒

−
0
𝛽] 

Using the rules of calculus (more specifically, using the fact that 𝑥−𝑎 =
1

𝑥𝑎
), we can rewrite the 

previous expression as: 

𝐸[𝑋] = ∫ (𝑥
𝑒
−
𝑥
𝛽

𝛽
)𝑑𝑥

∞

0

= −
∞

𝑒
∞
𝛽

+
0

𝑒
0
𝛽

− 𝛽 [
1

𝑒
∞
𝛽

−
1

𝑒
0
𝛽

] = −
∞

𝑒∞
+
0

𝑒0
− 𝛽 [

1

𝑒∞
−
1

𝑒0
] 

By noticing that 𝑒∞ = ∞ and 𝑒0 = 1, we can rewrite the previous equation as: 

𝐸[𝑋] = ∫ (𝑥
𝑒
−
𝑥
𝛽

𝛽
)𝑑𝑥

∞

0

= −
∞

∞
+
0

1
− 𝛽 [

1

∞
−
1

1
] 

Even if it is tempting to assume that 
∞

∞
= 1, 

∞

∞
 it is an indeterminate form. In order to know 

the real value of 
∞

∞
 in our setting, we need to apply l'Hôpital's Rule, which states the 

following: 

If 𝑓 and 𝑔 are differentiable functions for all values of 𝑥 larger than a given number, 𝑎, and it 

is the case that both lim
𝑥→𝑎

𝑓(𝑥) = ∞ and lim
𝑥→𝑎

𝑔(𝑥) = ∞, then the following equivalence holds 

true: 

lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
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In our case, lim
𝑥→∞

𝑥 = ∞ and lim
𝑥→∞

𝑒
𝑥

𝛽 = ∞. Hence, from l'Hôpital's Rule it follows that: 

lim
𝑥→∞

𝑥

𝑒
𝑥
𝛽

= lim
𝑥→∞

1

1
𝛽
𝑒
𝑥
𝛽

=
1

1
𝛽
𝑒
∞
𝛽

=
1

1
𝛽
𝑒∞

=
1

1
𝛽
∞
=
1

∞
= 0 

Hence, we can rewrite the expectation of 𝑋 as: 

𝐸[𝑋] = ∫ (𝑥
𝑒
−
𝑥
𝛽

𝛽
)𝑑𝑥

∞

0

= −
∞

∞
+
0

1
+ 𝛽 [

1

∞
−
1

1
] = −0 + 0 − 𝛽[0 − 1] 

Which, when simplifying, is equivalent to: 

𝐸[𝑋] = ∫ (𝑥
𝑒
−
𝑥
𝛽

𝛽
)𝑑𝑥

∞

0

= 𝛽 
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Determine 𝑽[𝑿] 

In order to calculate the variance of the RV 𝑋, we use the general formula: 

𝑉[𝑋] = 𝐸[(𝑋 − 𝐸[𝑋])2] 

As we already know that 𝐸[𝑋] = 𝛽, we can substitute that quantity in the previous expression 

to get: 

𝑉[𝑋] = 𝐸[(𝑋 − 𝛽)2] = ∫ [(𝑥 − 𝛽)2 ∗
𝑒
−
𝑥
𝛽

𝛽
]

∞

0

𝑑𝑥 

Expanding the parenthesis, we get: 

𝑉[𝑋] = ∫ [(𝑥2 + 𝛽2 − 2𝛽𝑥) ∗
𝑒
−
𝑥
𝛽

𝛽
]

∞

0

𝑑𝑥 

Applying the rules of calculus (more specifically, the fact that ∫ (𝑓(𝑥) + 𝑔(𝑥))𝑑𝑥 =

∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥), we can rewrite the previous equation as three different integrals: 

𝑉[𝑋] = ∫ (𝑥2 ∗
𝑒
−
𝑥
𝛽

𝛽
)

∞

0

𝑑𝑥 + ∫ (𝛽2 ∗
𝑒
−
𝑥
𝛽

𝛽
)

∞

0

𝑑𝑥 − ∫ (2𝛽𝑥 ∗
𝑒
−
𝑥
𝛽

𝛽
)

∞

0

𝑑𝑥 

As 𝛽2 and 2𝛽 are just constants within the second and third integrals respectively, we can take 

them out to get: 

𝑉[𝑋] = ∫ (𝑥2 ∗
𝑒
−
𝑥
𝛽

𝛽
)

∞

0

𝑑𝑥 + 𝛽2∫ (
𝑒
−
𝑥
𝛽

𝛽
)

∞

0

𝑑𝑥 − 2𝛽∫ (𝑥 ∗
𝑒
−
𝑥
𝛽

𝛽
)

∞

0

𝑑𝑥 

As 𝐸[𝑋] = ∫ (𝑥
𝑒
−
𝑥
𝛽

𝛽
)𝑑𝑥

∞

0
= 𝛽, we can substitute the third integral by 𝛽 to get: 

𝑉[𝑋] = ∫ (𝑥2 ∗
𝑒
−
𝑥
𝛽

𝛽
)

∞

0

𝑑𝑥 + 𝛽2∫ (
𝑒
−
𝑥
𝛽

𝛽
)

∞

0

𝑑𝑥 − 2𝛽𝛽 

Which is equivalent to: 
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𝑉[𝑋] = ∫ (𝑥2 ∗
𝑒
−
𝑥
𝛽

𝛽
)

∞

0

𝑑𝑥 + 𝛽2∫ (
𝑒
−
𝑥
𝛽

𝛽
)

∞

0

𝑑𝑥 − 2𝛽2 

Also, in order for 𝑓(𝑥) =
𝑒
−
𝑥
𝛽

𝛽
 to be a valid PDF, then it follows that ∫ (

𝑒
−
𝑥
𝛽

𝛽
)

∞

0
𝑑𝑥 = 1. Hence, 

substituting the second integral by 1, we get: 

  

𝑉[𝑋] = ∫ (𝑥2 ∗
𝑒
−
𝑥
𝛽

𝛽
)

∞

0

𝑑𝑥 + 𝛽2 ∗ (1) − 2𝛽2 

Which is identical to: 

𝑉[𝑋] = ∫ (𝑥2 ∗
𝑒
−
𝑥
𝛽

𝛽
)

∞

0

𝑑𝑥 + 𝛽2 − 2𝛽2 

Simplifying, we get: 

𝑉[𝑋] = ∫ (𝑥2 ∗
𝑒
−
𝑥
𝛽

𝛽
)

∞

0

𝑑𝑥 − 𝛽2 

Again, the remaining integral needs to be solved with the integration by parts technique. Fixing 

𝑓(𝑥) = 𝑥2 and 𝑔′(𝑥) =
𝑒
−
𝑥
𝛽

𝛽
, the two remaining elements to find the relevant integral are: 

𝑓′(𝑥) = 2𝑥 

𝑔(𝑥) = ∫ 𝑔′(𝑥)𝑑𝑥 = −𝑒
−
𝑥
𝛽 

Hence, we can rewrite the variance of the RV 𝑋 as: 

𝑉[𝑋] = [−𝑥2𝑒
−
𝑥
𝛽]
0

∞

−∫ (−2𝑥 ∗ 𝑒
−
𝑥
𝛽)

∞

0

𝑑𝑥 − 𝛽2 

As −2 is a constant, we can take it out of the integral to get: 

𝑉[𝑋] = [−𝑥2𝑒
−
𝑥
𝛽]
0

∞

+ 2∫ (𝑥𝑒
−
𝑥
𝛽)

∞

0

𝑑𝑥 − 𝛽2 
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Knowing that ∫ (𝑥
𝑒
−
𝑥
𝛽

𝛽
)𝑑𝑥

∞

0
= 𝛽, and noting that the 

1

𝛽
 within the integral is a constant, we 

can deduce that: 

∫ (𝑥
𝑒
−
𝑥
𝛽

𝛽
)𝑑𝑥

∞

0

=
1

𝛽
∫ (𝑥𝑒

−
𝑥
𝛽)𝑑𝑥

∞

0

= 𝛽 

 Isolating the integral, we get: 

∫ (𝑥𝑒
−
𝑥
𝛽) 𝑑𝑥

∞

0

= [𝛽𝛽]0
∞ = [𝛽2]0

∞ 

Substituting it into the variance of x, we get: 

𝑉[𝑋] = [−𝑥2𝑒
−
𝑥
𝛽]
0

∞

+ 2[𝛽2]0
∞ − 𝛽2 

Applying the First Fundamental Theorem of Calculus, we get: 

𝑉[𝑋] = −(∞)2𝑒
−
∞
𝛽 + (0)2𝑒

−
0
𝛽 + 2𝛽2 − 𝛽2 

Which, after simplifying, becomes: 

𝑉[𝑋] = −
∞

𝑒
∞
𝛽

+ 𝛽2 = −
∞

∞
+ 𝛽2 

Again, applying l'Hôpital's Rule for assessing the term with an indeterminate form, we get: 

lim
𝑥→∞

𝑥2

𝑒
𝑥
𝛽

= lim
𝑥→∞

2𝑥

1
𝛽
𝑒
𝑥
𝛽

=
2 ∗ ∞

1
𝛽
𝑒
∞
𝛽

=
∞

1
𝛽
𝑒∞

=
∞

1
𝛽
∞
=
∞

∞
 

By applying the l'Hôpital's Rule a second time, we get: 

lim
𝑥→∞

2𝑥

1
𝛽
𝑒
𝑥
𝛽

= lim
𝑥→∞

2

(
1
𝛽
)
2

𝑒
𝑥
𝛽

=
2

(
1
𝛽
)
2

𝑒
∞
𝛽

=
2

(
1
𝛽
)
2

𝑒∞
=

2

(
1
𝛽
)
2

∞

=
2

∞
= 0 

Hence, the variance of the RV 𝑋 is defined by the expression below: 

𝑉[𝑋] = −
∞

∞
+ 𝛽2 = 0 + 𝛽2 = 𝛽2 
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Suppose 𝜷 = 𝟏𝟎𝟎. Determine  the value 𝒄 such that  

 

𝐏𝐫[𝑿 ≥ 𝒄] =
𝟏

𝟐
. 

 

Finally, we are asked to find the value of 𝑐 for which Pr[𝑋 ≥ 𝑐] =
1

2
, given that 𝛽 = 100. First, 

let us rewrite 𝑓(𝑥) for the proposed value of 𝛽: 

𝑓(𝑥) =
𝑒−

𝑥
100

100
 

In order to find the proposed probability, we write the probability as a definite integral: 

Pr[𝑋 ≥ 𝑐] =
1

2
⟹ ∫ (

𝑒−
𝑥
100

100
)

∞

𝑐

𝑑𝑥 =
1

2
 

Multiplying the integrand by 1 = (1) ∗ (−1), we get: 

Pr[𝑋 ≥ 𝑐] =
1

2
⟹ ∫ [(−1) ∗ (−1) ∗ (

𝑒−
𝑥
100

100
)]

∞

𝑐

𝑑𝑥 =
1

2
 

Taking one of the -1’s out of the integral, we get: 

Pr[𝑋 ≥ 𝑐] =
1

2
⟹ −∫ (−

𝑒−
𝑥
100

100
)

∞

𝑐

𝑑𝑥 = −∫ (−
1

100
𝑒−

𝑥
100)

∞

𝑐

𝑑𝑥 =
1

2
 

By noticing that −
1

100
𝑒−

𝑥

100 =
𝑑(𝑒

−
𝑥
100)

𝑑𝑥
, and using the aforementioned rules of calculus, we get: 

Pr[𝑋 ≥ 𝑐] =
1

2
⟹ −[𝑒−

𝑥
100]

𝑐

∞

=
1

2
 

By applying the First Fundamental Theorem of Calculus, we get: 

Pr[𝑋 ≥ 𝑐] =
1

2
⟹ −[𝑒−

∞
100 − 𝑒−

𝑐
100] =

1

2
 

Which, by noticing that 𝑥−𝑎 =
1

𝑥𝑎
, becomes: 
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Pr[𝑋 ≥ 𝑐] =
1

2
⟹ −[

1

𝑒
∞
100

−
1

𝑒
𝑐
100

] = − [
1

𝑒∞
−

1

𝑒
𝑐
100

] = − [
1

∞
−

1

𝑒
𝑐
100

] =
1

𝑒
𝑐
100

=
1

2
 

Rearranging, we get: 

Pr[𝑋 ≥ 𝑐] =
1

2
⟹ 2 = 𝑒

𝑐
100 

Taking logs in both hand sides, we get: 

Pr[𝑋 ≥ 𝑐] =
1

2
⟹ ln(2) = ln (𝑒

𝑐
100) 

Which, by applying the rules of calculus, is equivalent to: 

Pr[𝑋 ≥ 𝑐] =
1

2
⟹ ln(2) =

𝑐

100
ln(𝑒) =

𝑐

100
 

Hence, isolating 𝑐 we get: 

Pr[𝑋 ≥ 𝑐] =
1

2
⟹ 100 ln(2) = 𝑐 = 69.315 
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1. A classical regression model is written, 

𝒚𝒕 = 𝜶 + 𝜷𝒙𝒕 + 𝜺𝒕,    𝜺𝒕~𝑰𝑰𝑫𝑵(𝟎, 𝝈
𝟐),    𝒕 = 𝟏, 𝟐,… , 𝒏 

Where the values of 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 are not random. 

(a) Derive the Ordinary Least Squares estimators of both 𝜶 and 𝜷, say �̂� and �̂�. 

By definition, we know that 𝑦𝑡 = �̂�𝑡 + 휀�̂�. Hence, we can isolate the residuals to get: 

휀�̂� = 𝑦𝑡 − �̂�𝑡 

More crucially, this equation just outlines the residual of each observation in our dataset; where 

each observational unit is described by the subscript 𝑡. In order to sum the residuals of all the 

observations in our data, we need to sum the residuals of each of the observations in our dataset, 

which we can write compactly as: 

∑휀�̂�

𝑛

𝑡=1

=∑𝑦𝑡 − �̂�𝑡

𝑛

𝑡=1

 

As our objective is to generate a model that makes the smallest mistakes possible, a tempting 

way to proceed would be to minimise the previous equation. However, note that the residuals 

can be either positive or negative. Hence, if we would were to minimise the previous equation 

we would be making one inappropriate assumption. Namely, that models that make no mistake 

at all are as equally good as models with a huge amount of mistakes that counterbalance each 

other.  

To see this, assume a candidate model A, with two observations (𝑡 = 1,2). This model has 

휀�̂�=1 = 1,000 and 휀�̂�=2 = −1,000. Hence, it follows that ∑ 휀�̂�
𝑛
𝑡=1 = (1,000 − 1,000) = 0. 

Now consider another candidate model, B, with two observations (𝑡 = 1,2). This model has 

휀�̂�=1 = 0 and 휀�̂�=2 = 0 . Hence, it follows that ∑ 휀�̂�
𝑛
𝑡=1 = (0 + 0) = 0. If we were to minimise 

the sum of the residuals, it follows that we wouldn’t be able to differentiate between models A 

and B. This is clearly a wrong approach, as we can see that model B is better than model A due 

to the fact it perfectly predicts our data. 

One approach that we can take to solve this problem is to square the residuals and sum 

the square of the residuals. The rationale for this approach is that it solves the previous issue. 

To see this, note that the square of either a positive or a negative number is always a positive 

number. Hence, we get rid of the counterbalancing issue mentioned before. In the vein of our 
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previous example, model A will have (휀�̂�=1)
2 = 1,0002 = 1,000,000 and (휀�̂�=2)

2 =

(−1,000)2 = 1,000,000. Hence,  ∑ (휀�̂�)
𝑛
𝑡=1

2
= (1,000,000 + 1,000,000) = 2,000,000 

would be the sum of the residuals of model A. On the other hand, model B’s squared residuals 

would be (휀�̂�=1)
2 = 02 = 0 and (휀�̂�=2)

2 = (0)2 = 0. Hence, its sum of squared residuals 

would be ∑ (휀�̂�)
𝑛
𝑡=1

2
= (0 + 0) = 0. We can see that, when minimising the square of residuals, 

model B would appear as the clear winner. We can write the sum of squared residuals as: 

𝑆(�̂�, �̂�) =∑(휀�̂�)
2

𝑛

𝑡=1

=∑(𝑦𝑡 − �̂�𝑡)
2

𝑛

𝑡=1

 

Given that our prediction model is given by the equation �̂�𝑡 = �̂� + �̂�𝑥𝑡, we can substitute it in 

the previous equation to get: 

𝑆(�̂�, �̂�) =∑(휀�̂�)
2

𝑛

𝑡=1

=∑(𝑦𝑡 − �̂� − �̂�𝑥𝑡)
2

𝑛

𝑡=1

 

In order to find the Ordinary Least Squares estimators of 𝛼 and 𝛽, we just need to solve an 

unconstrained minimisation problem (as we are not given any restrictions to complement the 

previous equation): 

min
�̂�,�̂�

[𝑆(�̂�, �̂�) =∑(𝑦𝑡 − �̂� − �̂�𝑥𝑡)
2

𝑛

𝑡=1

] 

The solution to the above problem requires us to find the First Order Conditions (FOC’s 

henceforth), which require setting the relevant first order derivatives equal to 0: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ 2∑−(𝑦𝑡 − �̂� − �̂�𝑥𝑡)

𝑛

𝑡=1

= 0 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ 2∑−𝑥𝑡 ∗ (𝑦𝑡 − �̂� − �̂�𝑥𝑡)

𝑛

𝑡=1

= 0 

Which collapse to: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒∑−(𝑦𝑡 − �̂� − �̂�𝑥𝑡)

𝑛

𝑡=1

= 0 
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𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒∑−𝑥𝑡 ∗ (𝑦𝑡 − �̂� − �̂�𝑥𝑡)

𝑛

𝑡=1

= 0 

We can expand both equations to get: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒∑−𝑦𝑡 + �̂� + �̂�𝑥𝑡

𝑛

𝑡=1

= 0 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒∑−𝑥𝑡𝑦𝑡 + �̂�𝑥𝑡 + �̂�𝑥𝑡𝑥𝑡

𝑛

𝑡=1

= 0 

Using the relevant rule of working with the summation operator6, we can rewrite the FOC’s as: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ −∑𝑦𝑡

𝑛

𝑡=1

+∑�̂�

𝑛

𝑡=1

+∑�̂�𝑥𝑡

𝑛

𝑡=1

= 0 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ −∑𝑥𝑡𝑦𝑡

𝑛

𝑡=1

+∑�̂�𝑥𝑡

𝑛

𝑡=1

+∑�̂�𝑥𝑡𝑥𝑡

𝑛

𝑡=1

= 0 

By taking the constant �̂� outside of the summation operators7, and by recalling the rule stating 

that the summation of a constant is 𝑛 times the constant (∑ 𝑐𝑛
𝑡=1 = 𝑛𝑐), we can rewrite the 

FOC’s as: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ −∑𝑦𝑡

𝑛

𝑡=1

+ 𝑛�̂� + �̂�∑𝑥𝑡

𝑛

𝑡=1

= 0 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ −∑𝑥𝑡𝑦𝑡

𝑛

𝑡=1

+∑�̂�𝑥𝑡

𝑛

𝑡=1

+ �̂�∑𝑥𝑡𝑥𝑡

𝑛

𝑡=1

= 0 

Isolating 𝑛�̂� in the Left Hand Side (LHS henceforth) of the first FOC, we get: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ 𝑛�̂� =∑𝑦𝑡

𝑛

𝑡=1

− �̂�∑𝑥𝑡

𝑛

𝑡=1

 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ −∑𝑥𝑡𝑦𝑡

𝑛

𝑡=1

+∑�̂�𝑥𝑡

𝑛

𝑡=1

+ �̂�∑𝑥𝑡𝑥𝑡

𝑛

𝑡=1

= 0 

                                           
6 ∑ (𝑎𝑥 + 𝑏𝑥)𝑛

𝑖=0 = ∑ 𝑎𝑥𝑛
𝑖=0 + ∑ 𝑏𝑥𝑛

𝑖=0  
7 Another rule regarding the summation operator is the following one: ∑ 𝑎𝑥𝑛

𝑖=0 = 𝑎∑ 𝑥𝑛
𝑖=0  
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Isolating �̂� in the LFH of the first FOC, we get: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ �̂� =

∑ 𝑦𝑡
𝑛
𝑡=1

𝑛
− �̂�

∑ 𝑥𝑡
𝑛
𝑡=1

𝑛
 

As, by definition, 𝑧̅ =
∑ 𝑧𝑡
𝑛
𝑡=1

𝑛
, we can rewrite the previous expression as: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ �̂� = �̅� − �̂��̅� 

Giving us the OLS estimator �̂� for the population parameter 𝛼. As we can see, the constant of 

our predicted model crucially depends on the averages of the independent and the dependent 

variables. 

Now, substituting the expression for �̂� in the second FOC, we get: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ −∑𝑥𝑡𝑦𝑡

𝑛

𝑡=1

+∑(�̅� − �̂��̅�)𝑥𝑡

𝑛

𝑡=1

+ �̂�∑𝑥𝑡𝑥𝑡

𝑛

𝑡=1

= 0 

Expanding the parenthesis, we can rewrite the second FOC as: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ −∑𝑥𝑡𝑦𝑡

𝑛

𝑡=1

+∑�̅�𝑥𝑡 − �̂��̅�𝑥𝑡

𝑛

𝑡=1

+ �̂�∑𝑥𝑡𝑥𝑡

𝑛

𝑡=1

= 0 

As before, by noticing that ∑ (𝑎𝑥 + 𝑏𝑥)𝑛
𝑖=0 = ∑ 𝑎𝑥𝑛

𝑖=0 + ∑ 𝑏𝑥𝑛
𝑖=0 , we can rewrite the previous 

FOC as: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ −∑𝑥𝑡𝑦𝑡

𝑛

𝑡=1

+∑�̅�𝑥𝑡

𝑛

𝑡=1

−∑�̂��̅�𝑥𝑡

𝑛

𝑡=1

+ �̂�∑𝑥𝑡𝑥𝑡

𝑛

𝑡=1

= 0 

Taking the constant �̂� outside of the summation term, we get: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ −∑𝑥𝑡𝑦𝑡

𝑛

𝑡=1

+∑�̅�𝑥𝑡

𝑛

𝑡=1

− �̂�∑�̅�𝑥𝑡

𝑛

𝑡=1

+ �̂�∑𝑥𝑡𝑥𝑡

𝑛

𝑡=1

= 0 

Taking �̂� as a common factor, we can rewrite the previous expression as: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ −∑𝑥𝑡𝑦𝑡

𝑛

𝑡=1

+∑�̅�𝑥𝑡

𝑛

𝑡=1

− �̂� (∑�̅�𝑥𝑡

𝑛

𝑡=1

−∑𝑥𝑡𝑥𝑡

𝑛

𝑡=1

) = 0 
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Using 𝑥𝑡for both the terms inside and outside the parenthesis, and noticing that ∑ 𝑎𝑥𝑛
𝑖=0 +

∑ 𝑏𝑥𝑛
𝑖=0 = ∑ (𝑎𝑥 + 𝑏𝑥)𝑛

𝑖=0 , we can rewrite the previous expression as: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ −∑𝑥𝑡(𝑦𝑡 − �̅�)

𝑛

𝑡=1

+ �̂� (∑𝑥𝑡(𝑥𝑡 − �̅�)

𝑛

𝑡=1

) = 0 

Rearranging, we get: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ �̂� (∑𝑥𝑡(𝑥𝑡 − �̅�)

𝑛

𝑡=1

) =∑𝑥𝑡(𝑦𝑡 − �̅�)

𝑛

𝑡=1

 

Isolating �̂�, we get: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ �̂� =

∑ 𝑥𝑡(𝑦𝑡 − �̅�)
𝑛
𝑡=1

∑ 𝑥𝑡(𝑥𝑡 − �̅�)
𝑛
𝑡=1

 

Hence, our estimators for the population parameters are: 

�̂� = �̅� − �̂��̅� 

�̂� =
∑ 𝑥𝑡(𝑦𝑡 − �̅�)
𝑛
𝑡=1

∑ 𝑥𝑡(𝑥𝑡 − �̅�)
𝑛
𝑡=1
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(b) Show that �̂� can be written as 

�̂� = ∑𝒄𝒕𝒚𝒕

𝒏

𝒕=𝟏

 

And determine the coefficients 𝒄𝒕 for 𝒕 = 𝟏, 𝟐,… , 𝒏. 

In order to write �̂� as the summation suggested above, we need to transform the expression so 

that we have 𝑦𝑡 multiplied by another term. To do that, we subdivide this question into two 

parts. First, we transform the numerator and, second, we transform the denominator. 

 

a. Transforming the numerator 

The numerator of �̂� is given by the following expression: 

∑𝑥𝑡(𝑦𝑡 − �̅�)

𝑛

𝑡=1

 

We expand the previous expression to get: 

∑𝑥𝑡(𝑦𝑡 − �̅�)

𝑛

𝑡=1

=∑𝑥𝑡𝑦𝑡 − 𝑥𝑡�̅�

𝑛

𝑡=1

 

Using the rules of summation, we rewrite the previous equation as: 

∑𝑥𝑡(𝑦𝑡 − �̅�)

𝑛

𝑡=1

=∑𝑥𝑡𝑦𝑡

𝑛

𝑡=1

−∑𝑥𝑡�̅�

𝑛

𝑡=1

 

Taking the constant �̅� outside of the second summation term, we get: 

∑𝑥𝑡(𝑦𝑡 − �̅�)

𝑛

𝑡=1

=∑𝑥𝑡𝑦𝑡

𝑛

𝑡=1

− �̅�∑𝑥𝑡

𝑛

𝑡=1

 

Substituting �̅� =
∑ 𝑦𝑡
𝑛
𝑡=1

𝑛
 in the previous expression, we get: 

∑𝑥𝑡(𝑦𝑡 − �̅�)

𝑛

𝑡=1

=∑𝑥𝑡𝑦𝑡

𝑛

𝑡=1

−
∑ 𝑦𝑡
𝑛
𝑡=1

𝑛
∑𝑥𝑡

𝑛

𝑡=1

=∑𝑥𝑡𝑦𝑡

𝑛

𝑡=1

−∑𝑦𝑡

𝑛

𝑡=1

∑ 𝑥𝑡
𝑛
𝑡=1

𝑛
=∑𝑥𝑡𝑦𝑡

𝑛

𝑡=1

−∑𝑦𝑡

𝑛

𝑡=1

�̅�𝑡 
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Using the rules of summation outlined above, we can rewrite the two summation terms as a 

single summation term: 

∑𝑥𝑡(𝑦𝑡 − �̅�)

𝑛

𝑡=1

=∑𝑥𝑡𝑦𝑡

𝑛

𝑡=1

−∑𝑦𝑡�̅�𝑡

𝑛

𝑡=1

=∑𝑥𝑡𝑦𝑡 − 𝑦𝑡�̅�𝑡

𝑛

𝑡=1

 

Using 𝑦𝑡 as a common factor, we can rewrite the previous expression as: 

∑𝑥𝑡(𝑦𝑡 − �̅�)

𝑛

𝑡=1

=∑𝑥𝑡𝑦𝑡 − 𝑦𝑡�̅�𝑡

𝑛

𝑡=1

=∑𝑦𝑡(𝑥𝑡 − �̅�𝑡)

𝑛

𝑡=1

 

Which is the transformed version of the numerator. As we can see, now we have the expression 

in terms of 𝑦𝑡 and an extra term multiplying it. 

 

b. Transforming the denominator 

The numerator of �̂� is given by the following expression: 

∑𝑥𝑡(𝑥𝑡 − �̅�)

𝑛

𝑡=1

 

We expand the parenthesis within the previous expression to get: 

∑𝑥𝑡(𝑥𝑡 − �̅�)

𝑛

𝑡=1

=∑𝑥𝑡𝑥𝑡 − 𝑥𝑡�̅�

𝑛

𝑡=1

 

Applying the rules of the summation operator, we can divide the previous expression into two 

different summation terms to get: 

∑𝑥𝑡(𝑥𝑡 − �̅�)

𝑛

𝑡=1

=∑𝑥𝑡𝑥𝑡

𝑛

𝑡=1

−∑𝑥𝑡�̅�

𝑛

𝑡=1

=∑𝑥𝑡
2

𝑛

𝑡=1

−∑𝑥𝑡�̅�

𝑛

𝑡=1

 

Noticing that −∑ 𝑥𝑡�̅�
𝑛
𝑡=1 = ∑ 𝑥𝑡�̅�

𝑛
𝑡=1 − 2∑ 𝑥𝑡�̅�

𝑛
𝑡=1 , we can rewrite the previous expression as: 

∑𝑥𝑡(𝑥𝑡 − �̅�)

𝑛

𝑡=1

=∑𝑥𝑡
2

𝑛

𝑡=1

+∑𝑥𝑡�̅�

𝑛

𝑡=1

− 2∑𝑥𝑡�̅�

𝑛

𝑡=1

 

Taking the constant �̅� out of the second summation term, we get: 
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∑𝑥𝑡(𝑥𝑡 − �̅�)

𝑛

𝑡=1

=∑𝑥𝑡
2

𝑛

𝑡=1

+ �̅�∑𝑥𝑡

𝑛

𝑡=1

− 2∑𝑥𝑡�̅�

𝑛

𝑡=1

 

Noticing that �̅� =
∑ 𝑥𝑡
𝑛
𝑡=1

𝑛
 and, hence, 𝑛�̅� = ∑ 𝑥𝑡

𝑛
𝑡=1 , we can substitute ∑ 𝑥𝑡

𝑛
𝑡=1  in the second 

term in order to get: 

∑𝑥𝑡(𝑥𝑡 − �̅�)

𝑛

𝑡=1

=∑𝑥𝑡
2

𝑛

𝑡=1

+ �̅�𝑛�̅� − 2∑𝑥𝑡�̅�

𝑛

𝑡=1

 

Hence, 

∑𝑥𝑡(𝑥𝑡 − �̅�)

𝑛

𝑡=1

=∑𝑥𝑡
2

𝑛

𝑡=1

+ 𝑛�̅�2 − 2∑𝑥𝑡�̅�

𝑛

𝑡=1

 

Noticing that �̅�2 is a constant and applying the rule ∑ 𝑐𝑛
𝑡=1 = 𝑛𝑐, we get: 

∑𝑥𝑡(𝑥𝑡 − �̅�)

𝑛

𝑡=1

=∑𝑥𝑡
2

𝑛

𝑡=1

+∑�̅�2
𝑛

𝑡=1

− 2∑𝑥𝑡�̅�

𝑛

𝑡=1

 

Using the identity (𝑎 − 𝑏)2 ≡ 𝑎2 + 𝑏2 − 2𝑎𝑏, it is easy to see that the previous equation is 

equivalent to: 

∑𝑥𝑡(𝑥𝑡 − �̅�)

𝑛

𝑡=1

=∑(𝑥𝑡 − �̅�)
2

𝑛

𝑡=1

 

c. Rewriting �̂� as �̂� = ∑ 𝑐𝑡𝑦𝑡
𝑛
𝑡=1  

Using the results of parts a. and b., we can rewrite the estimator �̂� as: 

�̂� =
∑ 𝑥𝑡(𝑦𝑡 − �̅�)
𝑛
𝑡=1

∑ 𝑥𝑡(𝑥𝑡 − �̅�)
𝑛
𝑡=1

=
∑ 𝑦𝑡(𝑥𝑡 − �̅�𝑡)
𝑛
𝑡=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

 

Hence, it follows that 𝑐𝑡 =
(𝑥𝑡−�̅�)

∑ (𝑥𝑡−�̅�)2
𝑛
𝑡=1

 describes the coefficients asked for. To see this, just 

substitute the formula for 𝑐𝑡 in the estimator of �̂� to get: 

�̂� =∑𝑐𝑡𝑦𝑡

𝑛

𝑡=1

=∑
(𝑥𝑡 − �̅�)

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

𝑦𝑡

𝑛

𝑡=1

 

Once we apply the summation in the denominator, we end up with a constant, which can be 

taken out of the global summation term to get: 
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�̂� = ∑𝑐𝑡𝑦𝑡

𝑛

𝑡=1

=
∑ (𝑥𝑡 − �̅�)
𝑛
𝑡=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

𝑦𝑡 =
∑ (𝑥𝑡 − �̅�)𝑦𝑡
𝑛
𝑡=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1
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(c) Using (1) show that the variance of �̂� is given by 

𝑽[�̂�] =
𝝈𝟐

∑ (𝒙𝒕 − �̅�)𝟐
𝒏
𝒊=𝟏

 

And explain why empirical investigation might be hampered if there were only small 

variations in the values of the independent variable. What would be the consequence if 

𝒙𝒕 = 𝒙𝒔 for every 𝒕 and 𝒔? 

Given that �̂� = ∑ 𝑐𝑡𝑦𝑡
𝑛
𝑡=1 , it follows that: 

𝑉[�̂�] = 𝑉 [∑𝑐𝑡𝑦𝑡

𝑛

𝑡=1

] 

Using the rules of variance, and given that 𝑐𝑡 is a constant and that the 𝑦𝑡’s are independent, 

we can rewrite the expression as: 

𝑉[�̂�] =∑𝑉[𝑐𝑡𝑦𝑡]

𝑛

𝑡=1

=∑𝑐𝑡
2𝑉[𝑦𝑡]

𝑛

𝑡=1

 

Substituting the expression for 𝑦𝑡 (𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡 + 휀𝑡) in the variance, we get the following 

expression: 

𝑉[�̂�] =∑𝑐𝑡
2𝑉[𝛼 + 𝛽𝑥𝑡 + 휀𝑡]

𝑛

𝑡=1

 

Knowing that the generic form of the variance is 𝑉[𝑦𝑡] = 𝐸[(𝑦𝑡 − 𝐸[𝑦𝑡])
2], we can rewrite the 

previous expression as: 

𝑉[�̂�] =∑𝑐𝑡
2𝐸[(𝛼 + 𝛽𝑥𝑡 + 휀𝑡 − 𝐸[𝛼 + 𝛽𝑥𝑡 + 휀𝑡])

2]

𝑛

𝑡=1

 

Using the rules of expectations, we can divide the 𝐸[𝛼 + 𝛽𝑥𝑡 + 휀𝑡] term into three terms to 

get: 

𝑉[�̂�] =∑𝑐𝑡
2𝐸[(𝛼 + 𝛽𝑥𝑡 + 휀𝑡 − 𝐸[𝛼] − 𝐸[𝛽𝑥𝑡] − 𝐸[휀𝑡])

2]

𝑛

𝑡=1
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By noticing that 𝐸[𝛼] = 𝛼, 𝐸[𝛽𝑥𝑡] = 𝛽𝑥𝑡8 and that  𝐸[휀𝑡] = 0, we can rewrite the previous 

expression as: 

𝑉[�̂�] =∑𝑐𝑡
2𝐸[(𝛼 + 𝛽𝑥𝑡 + 휀𝑡 − 𝛼 − 𝛽𝑥𝑡 − 0)

2]

𝑛

𝑡=1

 

Which collapses to: 

𝑉[�̂�] =∑𝑐𝑡
2𝐸[(휀𝑡)

2]

𝑛

𝑡=1

 

Given that we are told that 휀𝑡~𝐼𝐼𝐷𝑁(0, 𝜎
2), then it follows that: 

𝑉[휀𝑡] = 𝐸[(휀𝑡 − 𝐸[휀𝑡])
2] = 𝐸[(휀𝑡 − 0)

2] = 𝐸[휀𝑡
2] = 𝜎2 

Hence, substituting 𝐸[휀𝑡
2] = 𝜎2 in the expression for the variance of �̂�, we get: 

𝑉[�̂�] =∑𝑐𝑡
2𝜎2

𝑛

𝑡=1

 

As 𝜎2 is a constant, we can take it out of the summation term to get: 

𝑉[�̂�] = 𝜎2∑𝑐𝑡
2

𝑛

𝑡=1

 

Given that 𝑐𝑡 =
(𝑥𝑡−�̅�𝑡)

∑ (𝑥𝑡−�̅�)2
𝑛
𝑡=1

, the previous expression becomes: 

𝑉[�̂�] = 𝜎2∑(
(𝑥𝑡 − �̅�𝑡)

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

)

2𝑛

𝑡=1

 

Which, after applying some algebraic calculations, can be rewritten as: 

𝑉[�̂�] = 𝜎2
∑ (𝑥𝑡 − �̅�𝑡)
𝑛
𝑡=1

2

(∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1 )2

= 𝜎2
(∑ (𝑥𝑡 − �̅�𝑡)

𝑛
𝑡=1

2
)
1

(∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1 )2

=
𝜎2

∑ (𝑥𝑡 − �̅�𝑡)
𝑛
𝑡=1

2 

                                           
8 Notice that our population model 𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡 + 휀𝑡 only assumes 휀𝑡 to be a random variable. Both 𝛼, 𝛽 and 𝑥𝑡 

are not random but known variables and parameters and, hence, their expected value will just be the expected 

value of a constant. It, then, follows that the variance of 𝑦𝑡 , as we shall show later on, will be directly proportional 

to the variance of 휀𝑡. 
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If there were only small variations in the values of the independent variable, then our 

investigation might be hampered. To see this, we need to show that as the variation of the 

values of the independent variable decrease, the variance of our estimator �̂� increases. This 

means more noise in the data and, as a consequence, a greater difficulty in achieving statistical 

significance for a given value of �̂�. To see this, let’s define an arbitrarily small value as 𝛿. To 

see how the variance reacts to small variations in the values of the independent variable, we 

compute the limit of the variance when 𝑥𝑡 − �̅�𝑡 converges to the defined arbitrarily small value: 

lim
𝑥𝑡−�̅�𝑡→𝛿

(
𝜎2

∑ (𝑥𝑡 − �̅�𝑡)
𝑛
𝑡=1

2) =
𝜎2

∑ 𝛿2𝑛
𝑡=1

=
𝜎2

𝑛𝛿2
 

Now, by taking the derivative of the previous expression with respect to 𝛿 we will see how the 

variance varies when the variation of the values of the independent values decrease: 

𝑑 (
𝜎2

𝑛𝛿2
)

𝑑𝛿
= −

2𝑛𝜎2𝛿

𝑛2𝛿4
= −

2𝜎2

𝑛𝛿3
< 0 

As we can see, when 𝛿 gets bigger, the variance gets smaller. It, then, follows that when 𝛿 gets 

smaller the variance gets bigger. Hence, when the variation of the values of the independent 

variable are small, the variance will tend to be big. Also, it is easy to see that, when 𝑥𝑡 = 𝑥𝑠, 

then 

�̅� =
∑ 𝑥𝑡
𝑛
𝑡=1

𝑛
=
𝑥𝑡 + 𝑥𝑡 +⋯+ 𝑥𝑡

𝑛
=
𝑛𝑥𝑡
𝑛
= 𝑥𝑡 

And, substituting �̅� = 𝑥𝑡 in the formula for the variance of �̂� found before, we get: 

𝑉[�̂�]|
𝑥𝑡=�̅�

=
𝜎2

∑ (𝑥𝑡 − 𝑥𝑡)
𝑛
𝑡=1

2 =
𝜎2

∑ (0)𝑛
𝑡=1

2 =
𝜎2

0
= ∞ 

Hence, the consequence of 𝑥𝑡 = 𝑥𝑠 for every 𝑡 and 𝑠 would be an infinitely large variance. 

Thus, no statistical significance of the independent variable could ever be reached.  
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(d) Let 𝒅𝟏, … , 𝒅𝒏 be non-random coefficients that satisfy the following; 

∑ 𝒅𝒕
𝒏
𝒊=𝟏 = 𝟎    and    ∑ 𝒅𝒕𝒙𝒕

𝒏
𝒊=𝟏 = 𝟏 

Show that the estimator defined by 

�̃�𝒅 =∑𝒅𝒕𝒚𝒕

𝒏

𝒊=𝟏

 

Is an unbiased estimator of 𝜷. 

 

Taking expectations, we get: 

𝐸[𝛽𝑑] = 𝐸 [∑𝑑𝑡𝑦𝑡

𝑛

𝑖=1

] 

As the 𝑦𝑡’s are independent, we can rewrite the previous equation as: 

𝐸[𝛽𝑑] = ∑𝐸[𝑑𝑡𝑦𝑡]

𝑛

𝑖=1

 

Substituting 𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡 + 휀𝑡 into the previous expression, we get: 

𝐸[𝛽𝑑] = ∑𝐸[𝑑𝑡(𝛼 + 𝛽𝑥𝑡 + 휀𝑡)]

𝑛

𝑖=1

 

Expanding the parenthesis, the previous expression becomes: 

𝐸[𝛽𝑑] =∑(𝐸[𝑑𝑡𝛼] + 𝐸[𝑑𝑡𝛽𝑥𝑡] + 𝐸[𝑑𝑡휀𝑡])

𝑛

𝑖=1

 

Using the rules of the summation operator, we can divide the Right Hand Side into three 

summations: 

𝐸[𝛽𝑑] =∑𝐸[𝑑𝑡𝛼]

𝑛

𝑖=1

+∑𝐸[𝑑𝑡𝛽𝑥𝑡]

𝑛

𝑖=1

+∑𝐸[𝑑𝑡휀𝑡]

𝑛

𝑖=1

 

Which, given that 𝐸[𝑑𝑡] = 𝑑𝑡, becomes: 
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𝐸[𝛽𝑑] = ∑𝑑𝑡𝛼

𝑛

𝑖=1

+∑𝑑𝑡𝛽𝑥𝑡

𝑛

𝑖=1

+∑𝑑𝑡𝐸[휀𝑡]

𝑛

𝑖=1

 

As 𝐸[휀𝑡] = 0, the third term vanishes: 

𝐸[𝛽𝑑] =∑𝑑𝑡𝛼

𝑛

𝑖=1

+∑𝑑𝑡𝛽𝑥𝑡

𝑛

𝑖=1

 

Also, as 𝛼 and 𝛽 are constants, we can take them out of the summation to get: 

𝐸[𝛽𝑑] = 𝛼∑𝑑𝑡

𝑛

𝑖=1

+ 𝛽∑𝑑𝑡𝑥𝑡

𝑛

𝑖=1

 

And, given that ∑ 𝑑𝑡
𝑛
𝑖=1 = 0 and ∑ 𝑑𝑡𝑥𝑡

𝑛
𝑖=1 = 1 as assumed in the question, the previous 

equation becomes: 

𝐸[�̃�𝑑] = 𝛼(0) + 𝛽(1) = 𝛽 

Hence, if the assumptions of the question hold true, then the estimator 𝛽𝑑 is unbiased as  

𝐸[𝛽𝑑] = 𝛽 
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(e) Show that the variance of the unbiased estimator �̃�𝒅 is minimised when 

       𝒅𝒕 = 𝒄𝒕    for all 𝒕 

Where the coefficients 𝒄𝒕 are as determined in part (c). 

Showing that the variance of the estimator 𝛽𝑑 is minimised when 𝑑𝑡 = 𝑐𝑡 implies showing that 

the variance of the OLS estimator �̂� is the minimum possible one. Hence, the proved we are 

asked for is the proof of the Gauss-Markov theorem. To start, and similarly to part (d), 

𝑉[𝛽𝑑] = 𝑉 [∑[𝑑𝑡𝑦𝑡]

𝑛

𝑡=1

] =∑[𝑉[𝑑𝑡𝑦𝑡]]

𝑛

𝑡=1

=∑[𝑑𝑡
2𝑉[𝑦𝑡]]

𝑛

𝑡=1

= 𝜎2∑[𝑑𝑡
2]

𝑛

𝑡=1

 

Now, we want to manipulate the expression so that it depends on both 𝑐𝑡 and 𝑑𝑡. Later on, we 

then proceed to show that the term involving 𝑑𝑡 is positive and, hence, the variance is 

minimised when 𝑑𝑡 = 𝑐𝑡.  

Given that 𝑐𝑡 − 𝑐𝑡 = 0, we can rewrite the previous equation as: 

𝑉[�̃�𝑑] = 𝜎2∑[(𝑐𝑡 − 𝑐𝑡 + 𝑑𝑡)
2]

𝑛

𝑡=1

 

Which can be rearranged as: 

𝑉[�̃�𝑑] = 𝜎
2∑[(𝑐𝑡 + (𝑑𝑡 − 𝑐𝑡))

2
]

𝑛

𝑡=1

 

Expanding, we get: 

𝑉[�̃�𝑑] = 𝜎
2∑[𝑐𝑡

2 + (𝑑𝑡 − 𝑐𝑡)
2 + 2(𝑐𝑡(𝑑𝑡 − 𝑐𝑡))]

𝑛

𝑡=1

 

Using the rules of the summation operator, we can divide the RHS into three summation terms: 

𝑉[𝛽𝑑] = 𝜎
2 [∑𝑐𝑡

2

𝑛

𝑡=1

+∑(𝑑𝑡 − 𝑐𝑡)
2

𝑛

𝑡=1

+∑2𝑐𝑡(𝑑𝑡 − 𝑐𝑡)

𝑛

𝑡=1

] 

The next step is to show that the third element within the brackets is equal to 0. To see this, 

let’s just write the third element in the brackets below: 
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∑2𝑐𝑡(𝑑𝑡 − 𝑐𝑡)

𝑛

𝑡=1

= 2∑𝑐𝑡(𝑑𝑡 − 𝑐𝑡)

𝑛

𝑡=1

 

Substituting the first 𝑐𝑡 by the formula we previously found for 𝑐𝑡 (𝑐𝑡 =
(𝑥𝑡−�̅�)

∑ (𝑥𝑡−�̅�)2
𝑛
𝑡=1

), we get: 

∑2𝑐𝑡(𝑑𝑡 − 𝑐𝑡)

𝑛

𝑡=1

= 2∑(
(𝑥𝑡 − �̅�𝑡)

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

) (𝑑𝑡 − 𝑐𝑡)

𝑛

𝑡=1

= 2(
∑ (𝑥𝑡 − �̅�)(𝑑𝑡 − 𝑐𝑡)
𝑛
𝑡=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

) 

Expanding the numerator, we get: 

∑2𝑐𝑡(𝑑𝑡 − 𝑐𝑡)

𝑛

𝑡=1

= 2(
∑ (𝑥𝑡𝑑𝑡 − 𝑥𝑡𝑐𝑡 − �̅�𝑑𝑡 + �̅�𝑐𝑡)
𝑛
𝑡=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

) 

Using the rules of the summation operator, we can divide the numerator into four summation 

terms: 

∑2𝑐𝑡(𝑑𝑡 − 𝑐𝑡)

𝑛

𝑡=1

= 2(
∑ 𝑥𝑡𝑑𝑡
𝑛
𝑡=1 − ∑ 𝑥𝑡𝑐𝑡

𝑛
𝑡=1 − ∑ �̅�𝑑𝑡

𝑛
𝑡=1 + ∑ �̅�𝑐𝑡

𝑛
𝑡=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

) 

We can take the constant �̅� out of the third summation term to get: 

∑2𝑐𝑡(𝑑𝑡 − 𝑐𝑡)

𝑛

𝑡=1

= 2(
∑ 𝑥𝑡𝑑𝑡
𝑛
𝑡=1 − ∑ 𝑥𝑡𝑐𝑡

𝑛
𝑡=1 − �̅� ∑ 𝑑𝑡

𝑛
𝑡=1 + ∑ �̅�𝑐𝑡

𝑛
𝑡=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

) 

As ∑ 𝑥𝑡𝑑𝑡
𝑛
𝑡=1 = 1 and ∑ 𝑑𝑡

𝑛
𝑡=1 = 0 because of the assumptions made at question (d), the 

previous equation becomes: 

∑2𝑐𝑡(𝑑𝑡 − 𝑐𝑡)

𝑛

𝑡=1

= 2(
1 − ∑ 𝑥𝑡𝑐𝑡

𝑛
𝑡=1 − �̅�(0) + ∑ �̅�𝑐𝑡

𝑛
𝑡=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

) 

Which simplifies to: 

∑2𝑐𝑡(𝑑𝑡 − 𝑐𝑡)

𝑛

𝑡=1

= 2(
1 − ∑ 𝑥𝑡𝑐𝑡

𝑛
𝑡=1 + ∑ �̅�𝑐𝑡

𝑛
𝑡=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

) 

Now, substituting the remaining 𝑐𝑡’s by 𝑐𝑡 =
(𝑥𝑡−�̅�)

∑ (𝑥𝑡−�̅�)2
𝑛
𝑡=1

, we get: 
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∑2𝑐𝑡(𝑑𝑡 − 𝑐𝑡)

𝑛

𝑡=1

= 2(

1 − ∑ 𝑥𝑡 (
(𝑥𝑡 − �̅�)

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

)𝑛
𝑡=1 + ∑ �̅� (

(𝑥𝑡 − �̅�)
∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

)𝑛
𝑡=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

) 

Expanding the second and third terms of the global parenthesis, we get: 

∑2𝑐𝑡(𝑑𝑡 − 𝑐𝑡)

𝑛

𝑡=1

= 2

(

 
1 − ∑ (

𝑥𝑡
2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑡=1
−

𝑥𝑡�̅�
∑ (𝑥𝑡 − �̅�)

2𝑛
𝑡=1

)𝑛
𝑡=1 + ∑ (

�̅�𝑥𝑡
∑ (𝑥𝑡 − �̅�)

2𝑛
𝑡=1

−
�̅�2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑡=1
)𝑛

𝑡=1

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑡=1

)

  

Using the rules of the summation operator, we can divide each of the two summation terms of 

the numerator into two summation terms to get: 

∑2𝑐𝑡(𝑑𝑡 − 𝑐𝑡)

𝑛

𝑡=1

= 2(

1 − ∑ (
𝑥𝑡
2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑡=1
) + ∑ (

𝑥𝑡�̅�
∑ (𝑥𝑡 − �̅�)

2𝑛
𝑡=1

) +𝑛
𝑡=1

𝑛
𝑡=1 ∑ (

�̅�𝑥𝑡
∑ (𝑥𝑡 − �̅�)

2𝑛
𝑡=1

)𝑛
𝑡=1 −∑ (

�̅�2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑡=1
)𝑛

𝑡=1

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑡=1

) 

We can, now, group the four summation terms of the numerator together to get: 

∑2𝑐𝑡(𝑑𝑡 − 𝑐𝑡)

𝑛

𝑡=1

= 2

(

 
1 + ∑ (−

𝑥𝑡
2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑡=1
+

𝑥𝑡�̅�
∑ (𝑥𝑡 − �̅�)

2𝑛
𝑡=1

+
�̅�𝑥𝑡

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑡=1
−

�̅�2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑡=1
)𝑛

𝑡=1

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑡=1

)

  

Which can be rewritten as: 

∑2𝑐𝑡(𝑑𝑡 − 𝑐𝑡)

𝑛

𝑡=1

= 2

(

 
1 − ∑ (

𝑥𝑡
2 + �̅�2 − 2𝑥𝑡�̅�
∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

)𝑛
𝑡=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

)

 = 2

(

 
1 −

∑ 𝑥𝑡
2 + �̅�2 − 2𝑥𝑡�̅�

𝑛
𝑡=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

)

  

As (𝑎 − 𝑏)2 ≡ 𝑎2 + 𝑏2 − 2𝑎𝑏, we can rewrite the previous expression as: 

∑2𝑐𝑡(𝑑𝑡 − 𝑐𝑡)

𝑛

𝑡=1

= 2

(

 
1 −

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑡=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

)

  

Which, when simplifying, becomes: 

∑2𝑐𝑡(𝑑𝑡 − 𝑐𝑡)

𝑛

𝑡=1

= 2(
1 − 1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

) = 2(
0

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1

) = 2(0) = 0 

Hence, as we have demonstrated that the third element within the brackets of the expression 

for the variance of the estimator 𝛽𝑑 is equal to 0, we can now rewrite the expression for the 

variance of the estimator 𝛽𝑑 as: 
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𝑉[𝛽𝑑] = 𝜎2 [∑𝑐𝑡
2

𝑛

𝑡=1

+∑(𝑑𝑡 − 𝑐𝑡)
2

𝑛

𝑡=1

] 

Now, as a given number squared is always positive regardless of its sign, then it follows that 

(𝑑𝑡 − 𝑐𝑡)
2 ≥ 0 and, consequently, 

∑(𝑑𝑡 − 𝑐𝑡)
2

𝑛

𝑡=1

≥ 0 

Hence, the variance of the estimator 𝛽𝑑 can be written more generically as: 

𝑉[�̃�𝑑] =

{
 
 

 
 𝜎2∑𝑐𝑡

2

𝑛

𝑡=1

 𝑖𝑓 𝑑𝑡 = 𝑐𝑡

𝜎2 [∑𝑐𝑡
2

𝑛

𝑡=1

+≥ 0]  𝑖𝑓 𝑑𝑡 ≠ 𝑐𝑡

 

Thus, the variance of the estimator 𝛽𝑑 is minimised whenever 𝑐𝑡 = 𝑑𝑡. Or, in other terms, the 

variance of the estimator �̃�𝒅 is minimised whenever �̃�𝒅 is the OLS estimator of 𝜷. 
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(f) Explain why both �̂� and �̂� are consistent estimators. 

 We know that an estimator is consistent provided that 

lim
𝑛→∞

Pr[|�̂� − 𝛽| ≥ 휀] = 0 

In addition, Chebyshev’s inequality states the following: 

Pr[|�̂� − 𝐸[�̂�]| ≥ 휀] ≤
𝑉[�̂�]

휀2
 

Provided that �̂� is an unbiased estimator, then the first expression is equivalent to 

lim
𝑛→∞

Pr[|�̂� − 𝐸[�̂�]| ≥ 휀] = 0 

Equalling the lower bound of Chebyshev’s inequality with the equality of the previous 

expression implies: 

𝑉[�̂�]

휀2
= 0 ⇒ 𝑉[�̂�] = 0 

As 𝑛 tends to ∞. Given that the expression for the variance of �̂� was found before: 

𝑉[�̂�] =
𝜎2

∑ (𝑥𝑡 − �̅�)
𝑛
𝑡=1

2 

It follows that: 

lim
𝑛→∞

𝑉[�̂�] = lim
𝑛→∞

𝜎2

∑ (𝑥𝑡 − �̅�)
𝑛
𝑡=1

2 = 0 

As 𝑛 tends to ∞, the denominator will be composed of infinite terms: 

lim
𝑛→∞

𝑉[�̂�] =
𝜎2

(𝑥1 − �̅�)2 + (𝑥2 − �̅�)2 +⋯
 

If all 𝑥𝑡’s are equal, then it follows that 𝑥1 = 𝑥2 = ⋯ = �̅� and, as a result, the denominator will 

be equal to 0. However, if, for some 𝑡 and  𝑥𝑡 ≠ 𝑥𝑠, then the denominator will get big. More 

formally, let’s define 𝜌 ∈ [0,1] as the percentage of observations 𝑥𝑡 different from �̅�. Then, it 

follows that, as 𝑛 tends to ∞, the denominator will have 𝜌 ∗ ∞ = ∞ positive terms (as any 

number squared is positive. Hence, we can rewrite the previous expression as: 
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lim
𝑛→∞

𝑉[�̂�] =
𝜎2

(> 0) + (> 0) + ⋯
=
𝜎2

∞
= 0 

A similar argument can be applied to the variance of the estimator �̂�. 
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By ERNESTO M. GAVASSA PEREZ
* 

*This document was compiled based on the answers provided by Professor Patrick Marsh. 

Hence, all the credit should  be given to him 
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1. A classical regression model is written, 

𝒚𝒕 = 𝜶 + 𝜷𝒙𝒕 + 𝜺𝒕,    𝜺𝒕~𝑰𝑰𝑫𝑵(𝟎, 𝝈
𝟐),    𝒕 = 𝟏, 𝟐,… , 𝒏 

Where the values of 𝒙𝟏, … , 𝒙𝒏 are not random. Let �̂� and �̂� denote the OLS estimators of 

𝜶 and 𝜷, with the fitted values �̂�𝒕 and residuals �̂�𝒕 given by; 

   �̂�𝒕 = �̂� + �̂�𝒙𝒕    &    �̂�𝒕 = 𝒚𝒕 − �̂�𝒕. 

(a) Define 𝑻𝑺𝑺 = ∑ (𝒚𝒕 − �̅�)
𝟐𝒏

𝒊=𝟏 ,    𝑬𝑺𝑺 = ∑ (�̂�𝒕 − �̅�)
𝟐𝒏

𝒊=𝟏     and    𝑹𝑺𝑺 = ∑ �̂�𝒕
𝟐𝒏

𝒊=𝟏 , 

Then show that 

𝑻𝑺𝑺 = 𝑬𝑺𝑺 + 𝑹𝑺𝑺 

As stated in the question, the total sum of squares is defined to be the square of the deviation 

of the dependent variable around its mean: 

𝑇𝑆𝑆 =∑(𝑦𝑡 − �̅�)
2

𝑛

𝑖=1

 

Given that the residuals are assumed to be 휀�̂� = 𝑦𝑡 − �̂�𝑡, we can isolate the dependent variable 

to get the following identity: 

�̂�𝑡 + 휀�̂� = 𝑦𝑡 

Substituting 𝑦𝑡 in the 𝑇𝑆𝑆 formula, we get: 

𝑇𝑆𝑆 =∑(𝑦𝑡 − �̅�)
2

𝑛

𝑖=1

=∑(�̂�𝑡 + 휀�̂� − �̅�)
2

𝑛

𝑖=1

 

Which, after rearranging, looks like: 

𝑇𝑆𝑆 =∑((�̂�𝑡 − �̅�) + 휀�̂�)
2

𝑛

𝑖=1

 

Expanding, we get: 

𝑇𝑆𝑆 =∑(�̂�𝑡 − �̅�)
2 + 휀�̂�

2 − 2휀�̂�(�̂�𝑡 − �̅�)

𝑛

𝑖=1

 

Using the rules of the summation operator, we can divide the summation into three different 

summations to get: 
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𝑇𝑆𝑆 =∑(�̂�𝑡 − �̅�)
2

𝑛

𝑖=1

+∑휀�̂�
2

𝑛

𝑖=1

−∑2휀�̂�(�̂�𝑡 − �̅�)

𝑛

𝑖=1

 

Using the rules of the summation operator, we can take the 2 outside the third summation 

operator; and, additionally expanding the parenthesis of the third element, we get: 

𝑇𝑆𝑆 =∑(�̂�𝑡 − �̅�)
2

𝑛

𝑖=1

+∑휀�̂�
2

𝑛

𝑖=1

− 2∑휀�̂��̂�𝑡 − 휀�̂��̅�

𝑛

𝑖=1

 

We can divide the third term into two summations: 

𝑇𝑆𝑆 =∑(�̂�𝑡 − �̅�)
2

𝑛

𝑖=1

+∑휀�̂�
2

𝑛

𝑖=1

− 2∑휀�̂��̂�𝑡

𝑛

𝑖=1

+ 2∑휀�̂��̅�

𝑛

𝑖=1

 

By noticing that �̂�𝑡 = �̂� + �̂�𝑥𝑡, we can substitute the third element to get: 

𝑇𝑆𝑆 =∑(�̂�𝑡 − �̅�)
2

𝑛

𝑖=1

+∑휀�̂�
2

𝑛

𝑖=1

− 2∑휀�̂�(�̂� + �̂�𝑥𝑡)

𝑛

𝑖=1

+ 2∑휀�̂��̅�

𝑛

𝑖=1

 

Again, expanding the third element and dividing it into two summation terms, we get: 

𝑇𝑆𝑆 =∑(�̂�𝑡 − �̅�)
2

𝑛

𝑖=1

+∑휀�̂�
2

𝑛

𝑖=1

− 2∑휀�̂��̂�

𝑛

𝑖=1

− 2∑휀�̂��̂�𝑥𝑡

𝑛

𝑖=1

+ 2∑휀�̂��̅�

𝑛

𝑖=1

 

As �̂�, �̂� and �̅� are constants, they can be taken out of the summation terms: 

𝑇𝑆𝑆 =∑(�̂�𝑡 − �̅�)
2

𝑛

𝑖=1

+∑휀�̂�
2

𝑛

𝑖=1

− 2�̂�∑휀�̂�

𝑛

𝑖=1

− 2�̂�∑휀�̂�𝑥𝑡

𝑛

𝑖=1

+ 2�̅�∑휀�̂�

𝑛

𝑖=1

 

One should notice, at this point, that ∑ 휀�̂�
𝑛
𝑖=1 = 0 and ∑ 휀�̂�𝑥𝑡

𝑛
𝑖=1 = 0. To see this, just rewrite 

the FOC’s of the OLS we covered in the previous tutorial: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ 2∑−(𝑦𝑡 − �̂� − �̂�𝑥𝑡)

𝑛

𝑡=1

= 0 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ 2∑−𝑥𝑡 ∗ (𝑦𝑡 − �̂� − �̂�𝑥𝑡)

𝑛

𝑡=1

= 0 

Now, given that �̂�𝑡 = �̂� + �̂�𝑥𝑡 as commented earlier, the previous FOC’s can be rewritten as: 
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𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ 2∑−(𝑦𝑡 − (�̂� + �̂�𝑥𝑡))

𝑛

𝑡=1

= 2∑−(𝑦𝑡 − �̂�𝑡)

𝑛

𝑡=1

= 0 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ 2∑−𝑥𝑡 ∗ (𝑦𝑡 − (�̂� + �̂�𝑥𝑡))

𝑛

𝑡=1

= 2∑−𝑥𝑡 ∗ (𝑦𝑡 − �̂�𝑡)

𝑛

𝑡=1

= 0 

Recall that the question stated that 휀�̂� = 𝑦𝑡 − �̂�𝑡. Substituting 휀�̂� in the FOC’s, we get: 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ 2∑−(휀�̂�)

𝑛

𝑡=1

= −2∑휀�̂�

𝑛

𝑡=1

= 0 ⇒∑휀�̂�

𝑛

𝑡=1

= 0 

𝜕𝑆(�̂�, �̂�)

𝜕�̂�
= 0 ⇒ 2∑−𝑥𝑡 ∗ 휀�̂�

𝑛

𝑡=1

= −2∑𝑥𝑡 ∗ 휀�̂�

𝑛

𝑡=1

= 0 ⇒∑𝑥𝑡 ∗ 휀�̂�

𝑛

𝑡=1

 

Hence, by substituting ∑ 휀�̂�
𝑛
𝑖=1 = 0 and ∑ 휀�̂�𝑥𝑡

𝑛
𝑖=1 = 0 in the 𝑇𝑆𝑆 equation, we get: 

𝑇𝑆𝑆 =∑(�̂�𝑡 − �̅�)
2

𝑛

𝑖=1

+∑휀�̂�
2

𝑛

𝑖=1

− 2�̂�(0) − 2�̂�(0) + 2�̅�(0) 

Which collapses to: 

𝑇𝑆𝑆 =∑(�̂�𝑡 − �̅�)
2

𝑛

𝑖=1

+∑휀�̂�
2

𝑛

𝑖=1

= 𝐸𝑆𝑆 + 𝑅𝑆𝑆 

 

 

 

  



82 

 

(b) Detail the role played by the coefficient of determination 𝑹𝟐 is assessing the overall 

fit of the fitted model. 

The coefficient of determination 𝑅2 is defined to be the deviation of the independent variable 

around its mean that is explained by the variation of the predicted variable �̂�𝑡 around its mean. 

Put shortly, 𝑅2 is the amount of variance of the independent variable that can be predicted by 

our estimation. Notice that, as �̂�𝑡 = �̂� + �̂�𝑥𝑡, then 𝐸[�̂�𝑡] = �̅̂� = 𝛼 + 𝛽𝑥𝑡 = 𝐸[𝑦𝑡] = �̅� as far 

as the OLS estimators are unbiased (they indeed are. See part (d) of tutorial 4 and the lecture 

notes).  

Hence, we can rewrite 𝐸𝑆𝑆 as: 

𝐸𝑆𝑆 =∑(�̂�𝑡 − �̅̂�)
2

𝑛

𝑖=1

 

Given the definition stated above, it becomes clear that 
𝐸𝑆𝑆

𝑇𝑆𝑆
 is the coefficient of determination: 

𝑅2 =
𝐸𝑆𝑆

𝑇𝑆𝑆
 

As 𝑇𝑆𝑆 = 𝐸𝑆𝑆 + 𝑅𝑆𝑆, then, we can substitute 𝑇𝑆𝑆 above to get: 

𝑅2 =
𝐸𝑆𝑆

𝐸𝑆𝑆 + 𝑅𝑆𝑆
 

And, as 𝑅𝑆𝑆 = ∑ 휀�̂�
2𝑛

𝑖=1 ≥ 0 and 𝐸𝑆𝑆 = ∑ (�̂�𝑡 − �̅̂�)
2𝑛

𝑖=1 ≥ 0, as both are sums of squared 

numbers, it follows that 

𝑅2 =
≥ 0

≥ 0
= (≥ 0) 

Additionally, 

𝑅2 =
𝐸𝑆𝑆

𝐸𝑆𝑆+≥ 0
= (≤ 1) 

Hence, 𝑅2 can only take values in the range 0 to 1. In other words, the percentage of variance 

of the independent variable that can be explained by our model lies within the conventional 0% 

- 100% limit: 

𝑅2 ∈ [0,1] 
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Alternatively, one can divide the identity 𝑇𝑆𝑆 = 𝐸𝑆𝑆 + 𝑅𝑆𝑆 and divide it by 𝑇𝑆𝑆 to get: 

𝑇𝑆𝑆

𝑇𝑆𝑆
=
𝐸𝑆𝑆

𝑇𝑆𝑆
+
𝑅𝑆𝑆

𝑇𝑆𝑆
 

As we know that 𝑅2 =
𝐸𝑆𝑆

𝑇𝑆𝑆
, substituting it and isolating 𝑅2, we get: 

   

1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
= 𝑅2 
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(c) Detail why the statistic 

𝑻𝜷 =

(

 
 
 

�̂� − 𝜷

√
�̂�𝟐

∑ (𝒙𝒕 − �̅�)𝟐
𝒏
𝒊=𝟏 )

 
 
 

~𝒕(𝒏−𝟐), 

Where 𝒕(𝒏−𝟐) has a student-t distribution with 𝒏 − 𝟐 degrees of freedom. 

As discussed in the previous tutorial, �̂�~𝑁 [𝛽,
𝜎2

∑ (𝑥𝑡−�̅�)2
𝑛
𝑖=1

]. Standardising the OLS estimator 

will yield a variable following a normal distribution with mean 0 and variance 1. Even when 

proved in previous tutorials, let’s just prove it again so that we are confident enough with the 

suggested result. Taking expectations of the standardised OLS variable, we get: 

𝐸

[
 
 
 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 ]

 
 
 
 
 

 

Using the rules of expectations, we can divide the previous expression into two terms: 

𝐸

[
 
 
 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 ]

 
 
 
 
 

= 𝐸

[
 
 
 
 
 

�̂�

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 ]

 
 
 
 
 

− 𝐸

[
 
 
 
 
 

𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 ]

 
 
 
 
 

 

Given that 𝑥𝑡 is not random, and that 𝜎2 and 𝛽 are constant, we can use the rules of expectations 

to get: 

𝐸

[
 
 
 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 ]

 
 
 
 
 

=
1

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

𝐸[�̂�] −
𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

 

Given that the OLS estimator is unbiased, then 𝐸[�̂�] = 𝛽. Substituting in the previous equation, 

we get: 
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𝐸

[
 
 
 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1 ]
 
 
 
 
 

=
1

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1

𝛽 −
𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1

=
𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1

−
𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1

= 0 

We can, now, express the variance of the standardised variable as follows: 

𝑉

[
 
 
 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 ]

 
 
 
 
 

= 𝐸

[
 
 
 
 
 

(

 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

− 𝐸

[
 
 
 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 ]

 
 
 
 
 

)

 
 
 

2

]
 
 
 
 
 

 

Given that 𝐸

[
 
 
 
 

�̂�−𝛽

√
𝜎2

∑ (𝑥𝑡−�̅�)
2𝑛

𝑖=1 ]
 
 
 
 

= 0, as found before, the previous expression collapses to: 

𝑉

[
 
 
 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 ]

 
 
 
 
 

= 𝐸

[
 
 
 
 
 

(

 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 )

 
 
 

2

]
 
 
 
 
 

 

Expanding, we get: 

𝑉

[
 
 
 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1 ]
 
 
 
 
 

= 𝐸

[
 
 
 
 
 

(

 
 
 

�̂�

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1 )

 
 
 

2

+

(

 
 
 

𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1 )

 
 
 

2

− 2

(

 
 
 

�̂�

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1 )

 
 
 

(

 
 
 

𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1 )

 
 
 

]
 
 
 
 
 

 

Applying the rules of calculus, we can divide the previous expression into 3 terms: 

𝑉

[
 
 
 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1 ]
 
 
 
 
 

= 𝐸

[
 
 
 
 
 

(

 
 
 

�̂�

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1 )

 
 
 

2

]
 
 
 
 
 

+ 𝐸

[
 
 
 
 
 

(

 
 
 

𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1 )

 
 
 

2

]
 
 
 
 
 

+ 𝐸

[
 
 
 
 
 

−2

(

 
 
 

�̂�

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1 )

 
 
 

(

 
 
 

𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1 )

 
 
 

]
 
 
 
 
 

 

Given that 𝑥𝑡 is not random, and that 𝜎2 and 𝛽 are constant, we can use the roles of expectations 

to get: 
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𝑉

[
 
 
 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1 ]
 
 
 
 
 

=

(

 
 
 

1

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1 )

 
 
 

2

𝐸[�̂�2] +

(

 
 
 

1

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1 )

 
 
 

2

𝐸[𝛽2] − 2𝛽

(

 
 
 

1

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1 )

 
 
 

2

𝐸[�̂�] 

Taking 

(

 1

√
𝜎2

∑ (𝑥𝑡−�̅�)
2𝑛

𝑖=1 )

 

2

 as a common factor, we get: 

𝑉

[
 
 
 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 ]

 
 
 
 
 

=

(

 
 
 

1

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 )

 
 
 

2

(𝐸[�̂�2] + 𝐸[𝛽2] − 2𝛽𝐸[�̂�]) 

As 𝛽2 is constant, we can take it out of the expectation. Also, as �̂� is unbiased, then 𝐸[�̂�] = 𝛽, 

making the previous expression equivalent to: 

𝑉

[
 
 
 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 ]

 
 
 
 
 

=

(

 
 
 

1

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 )

 
 
 

2

(𝐸[�̂�2] + 𝛽2 − 2𝛽𝛽) 

Which collapses to: 

𝑉

[
 
 
 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 ]

 
 
 
 
 

=

(

 
 
 

1

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 )

 
 
 

2

(𝐸[�̂�2] + 𝛽2 − 2𝛽2) 

And further simplifies to: 

𝑉

[
 
 
 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 ]

 
 
 
 
 

= (
1

𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

)(𝐸[�̂�2] − 𝛽2) 

We do not know 𝐸[�̂�2], but we do know that:  
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𝑉[�̂�] =
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

= 𝐸 [(�̂� − 𝛽)
2
] 

Expanding the RHS, we get: 

𝑉[�̂�] =
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

= 𝐸[�̂�2 + 𝛽2 − 2𝛽�̂�] 

Which, using the rules of expectations, is equivalent to: 

𝑉[�̂�] =
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

= 𝐸[�̂�2] + 𝛽2 − 2𝛽𝐸[�̂�] 

Again, as �̂� is unbiased, we can substitute 𝐸[�̂�] = 𝛽 in the previous equation to get: 

𝑉[�̂�] =
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

= 𝐸[�̂�2] + 𝛽2 − 2𝛽𝛽 = 𝐸[�̂�2] + 𝛽2 − 2𝛽2 

Which simplifies to 

𝑉[�̂�] =
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

= 𝐸[�̂�2] − 𝛽2 

Recalling that the expression for the variance of our standardised variable was: 

𝑉

[
 
 
 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 ]

 
 
 
 
 

= (
1

𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

)(𝐸[�̂�2] − 𝛽2) 

And noticing that we just found 𝐸[�̂�2] − 𝛽2 =
𝜎2

∑ (𝑥𝑡−�̅�)2
𝑛
𝑖=1

, we can substitute the expression for 

𝐸[�̂�2] − 𝛽2 in the previous equation to get: 

𝑉

[
 
 
 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 ]

 
 
 
 
 

= (
1

𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

)(
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

) 

Which simplifies to: 
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𝑉

[
 
 
 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 ]

 
 
 
 
 

=

𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

= 1 

Hence, we have shown that 
�̂�−𝛽

√
𝜎2

∑ (𝑥𝑡−�̅�)
2𝑛

𝑖=1

~𝑁(0,1) 

More importantly, notice that, now, the standardised variable will give us a number. Also, given 

the confidence level we want to achieve, the statistical table of the normal distribution will give 

us a number against to which we can compare our statistic. 

Or is it? Notice that we have 𝝈𝟐 in the denominator, which is a population parameter and, 

hence, unknown. �̂� is clearly known, as it is our OLS estimator; and ∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1  is also 

known as we observe our independent variable 𝑥𝑡. If we want to test whether �̂� is statistically 

significantly different from an ex-ante hypothesized value of 𝛽, then we don’t care about the 

real value of 𝛽 but about our hypothesised value; so we could say we know 𝛽 (italics are 

crucial to understand this bit. Of course we care about 𝛽, but in the domain of hypothesis 

testing our main focus is on the difference between the value we observe, �̂�, and the value we 

ex-ante hypothesize it should have). The main punchline in here is to note that 
�̂�−𝛽

√
𝜎2

∑ (𝑥𝑡−�̅�)
2𝑛

𝑖=1

 is 

not a valid test statistic, as it would need us to know the population parameter 𝜎2, which we do 

not know.  

Here, the use of the distributions we have studied in the lecture notes become massively 

important. The question that follows is: can we transform our normal (0,1) into another 

variable, following a distribution we know, that can allow us to test for the difference between 

�̂� and 𝛽? 

Instead of directly giving the answer, I believe to be useful to explain why we do actually need 

a t-student distribution. To see this, notice that a chi square distribution wouldn’t solve our 

problem. If we square our standardised variable, we’d get the following: 
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(

 
 
 

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 )

 
 
 

2

=
(�̂� − 𝛽)

2

𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

~𝜒(1)
2  

As we know from the lecture notes, a normal (0,1) squared follows a chi quare distribution. In 

this case, as there is only one normal (0,1) squared, the previous expression involves a variable 

following a chi square distribution with 1 degree of freedom. However, and more crucially, 

we’d still be facing the same problem: namely, that we still have an unknown parameter (𝜎2) 

affecting our variable. Therefore, just a chi square won’t be able to suit our needs. An F-

snedecor distribution may solve our issues. But, as we’ll see later on, under some circumstances 

the square of the T statistic follows an F distribution.  

Let’s turn our focus to the remaining distribution that can be constructed from a normal (0,1): 

the t-student distribution. If we recall the lectures, we know that a t-student distribution is 

generated in the following way: 

𝑇 =
𝑁(0,1)

√𝜒(𝑛)
2

𝑛

~𝑡(𝑛) 

Even when we do not know 𝜎2, we do actually know �̂�2. Hence, if there was a way to 

generate a chi square variable with both 𝝈𝟐 and �̂�𝟐, such that the 𝝈𝟐’s would cancel out, 

we could use a t-statistic to test for the difference between the OLS estimator of 𝜷 and 𝜷 

itself. Indeed, it will be shown in later courses that: 

(𝒏 − 𝟐)�̂�𝟐

𝝈𝟐 
~𝝌(𝒏−𝟐)

𝟐  

Hence, it is the case that: 

𝑇 =

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

√
(𝑛 − 2)�̂�2

𝜎2 
𝑛 − 2

~𝑡(𝑛−2) 

We can simplify by noticing that the (𝑛 − 2)’s cancel out: 
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𝑇 =

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

√
(𝑛 − 2)�̂�2

𝜎2 
𝑛 − 2

=

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

√�̂�
2

𝜎2 

~𝑡(𝑛−2) 

Which is equivalent to9: 

𝑇 =

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1

√
(𝑛 − 2)�̂�2

𝜎2 
𝑛 − 2

=
�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1

∗
√𝜎2

√�̂�2
~𝑡(𝑛−2) 

We can further write it as: 

𝑇 =

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

√
(𝑛 − 2)�̂�2

𝜎2 
𝑛 − 2

=
(�̂� − 𝛽) ∗ √𝜎2

√𝜎2√
1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

√�̂�2

~𝑡(𝑛−2) 

From which it becomes clear that the 𝜎2’s cancel out: 

𝑇 =

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

√
(𝑛 − 2)�̂�2

𝜎2 
𝑛 − 2

=
(�̂� − 𝛽)

√
1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

√�̂�2

~𝑡(𝑛−2) 

Again, using the rules of calculus (now we exploit the fact that √𝑎𝑏 = √𝑎 ∗ √𝑏), we get: 

  

                                           

9 Remember that 

𝑎

𝑏
𝑐

𝑐

=
𝑎

𝑏
∗
𝑑

𝑐
 and that √

𝑎

𝑏
=

√𝑎

√𝑏
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𝑇 =

�̂� − 𝛽

√
𝜎2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

√
(𝑛 − 2)�̂�2

𝜎2 
𝑛 − 2

=
(�̂� − 𝛽)

√
�̂�2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

~𝑡(𝑛−2) 

 

Now, we have a very similar variable from the standardised one we started with. However, 

notice that the unique difference is that we now have �̂�2, which we know, instead of the 

unknown 𝜎2. This changes the distribution from a normal (0,1) to a t-student distribution with 

(𝑛 − 2) degrees of freedom. We can, now, compare the value of our statistic with the critical 

value we get from the t-student distribution given the 𝑛 of our sample and the confidence level 

we want to use. Furthermore, the additional fact that �̂�2 is an unbiased estimator of the 

population parameter 𝜎2 makes it even more attractive. 
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(d) A researcher has data from 27 households and is interested in the relationship 

between weekly household consumption 𝒀 and weekly household income 𝑿. The 

results of their OLS estimation are 

       𝒚𝒕 = 𝟓. 𝟎 + 𝟎. 𝟐𝟓𝒙𝒕 + �̂�𝒕,    𝑹
𝟐 = 𝟎. 𝟓,    𝒏 = 𝟐𝟕 

    (𝟏. 𝟎)    (𝟎. 𝟎𝟓). 

Where �̂�𝒕 denotes a residual and the figures in round brackets are the estimated standard 

errors.  

(i) It is claimed that households spend approximately one fifth of their income 

on food. Test this claim using the data from households at the 5% 

significance level.  

(You may assume the relevant critical value is 2.0). 

At this point, you may be wondering what all these theoretical derivations are useful for. This 

brief example aims to clarify that. For the aspiring econometrician, the theory behind 

hypothesis testing may be wonderful. However, for all of you who may consider to do empirical 

work, understanding why these results are important and what are they used for is crucial.  

Our previous result has suggested us that the variable 
(�̂�−𝛽)

√
�̂�2

∑ (𝑥𝑡−�̅�)
2𝑛

𝑖=1

 is going to let us test whether 

�̂� is substantially different (statistically speaking) from 𝛽. As economists, the relevant test is 

most widely used to analyse whether a given variable has any effect at all in our dependent 

variable. For instance, one may wonder whether years of education (𝑥𝑡) has any effect on 

earnings (𝑦𝑡). For that, the usual practice in the profession is to grab datasets and run an ols 

(or a variant of) regression between both 𝑥𝑡 and 𝑦𝑡, which are observable. Within this setup, 

the test on whether �̂� is different from 0 allows us to test whether an extra year of education 

influences earnings. Notice that we are assuming, ex-ante, that 𝛽 = 0. This is normally done 

as we normally try to unravel new knowledge and, hence, 𝛽 = 0 serves as a useful benchmark: 

Given that the previous knowledge in the literature is that this variable has no effect, I use some 

new data to test whether that statement is statistically correct or false. 
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In the proposed case, 
1

5
= 0.2. Hence, the ex-ante claimed value of 𝛽 is 𝛽 = 0.2. Our test, then, 

would involve comparing the estimated value against the ex-ante hypothesized one. More 

formally, we write the null hypothesis as: 

𝐻0: 𝛽 = 0.2 

The alternative hypothesis is that the previous relationship does not hold: 

𝐻1: 𝛽 ≠ 0.2 

We normally say that we test the null hypothesis (that 𝛽 = 0.2) against the alternative (that 

𝛽 ≠ 0.2). To do that, we just substitute 𝛽 = 0.2 and �̂� = 0.25 (the coefficient from the 

regression) in the test statistic outlined in the previous section to get: 

𝑇 =
(0.25 − 0.20)

√
�̂�2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

 

Now, notice that we already found that 𝑉[�̂�] =
𝜎2

∑ (𝑥𝑡−�̅�)2
𝑛
𝑖=1

, and that an unbiased estimator of 

that variance10 is: 

�̂�[�̂�] =
�̂�2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

 

Hence, it follows that the standard deviation of �̂� is: 

𝑆�̂�[�̂�] = √�̂�[�̂�] = √
�̂�2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

 

Which is the denominator of the expression above. Hence, the figure in brackets below the 

coefficient �̂� is 𝑆�̂�[�̂�]. Plugging it in the expression of the test statistic, we get: 

𝑇 =
(0.25 − 0.20)

√
�̂�2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

=
(0.25 − 0.20)

𝑆�̂�[�̂�]
=
0.05

0.05
= 1 

                                           

10 You will study this on later courses. At the moment, it suffices to know that �̂�2 =
∑ (̂𝑡)

2𝑛
𝑖=1

𝑛−2
, and that 𝐸[�̂�2] =

𝐸 [
∑ (̂𝑡)

2𝑛
𝑖=1

𝑛−2
] = 𝜎2 
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As 1 < 2, this implies that our test statistic is lower than the critical value. Hence, we cannot 

reject the null hypothesis that �̂� = 0.20. In other words, the statistical evidence is not able to 

refute the ex-ante knowledge we had about the relationship between household income and 

household expenditure on food. 
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(ii) Detail how the coefficient of determination 𝑹𝟐 can be used to test whether 

the variables 𝒀 and 𝑿 are related. Test the hypothesis of no relationship at 

the 5% significance level. 

The relationship between to variables is normally measured by the correlation coefficient: 

𝑟 =
∑ (𝑥𝑡 − �̅�)(𝑦𝑡 − �̅�)
𝑛
𝑡=1

√∑ (𝑥𝑡 − �̅�)2
𝑛
𝑡=1 ∑ (𝑦𝑡 − �̅�)2

𝑛
𝑡=1

 

In order to see how the coefficient of determination can be used to test whether variables 𝑌 and 

𝑋 are related, we need to show several statements.  

First, that the coefficient of determination is equal to the square of the coefficient of correlation: 

𝑟2 = 𝑅2 

Second, that the coefficient of determination determines a test statistic that can be used instead 

of the one covered in part (c), the F statistic. The F statistic serves the same purpose as the T 

statistic and it is defined as the square of the T statistic: 

𝐹 = 𝑇2 =

(

 
 
 

(�̂� − 𝛽)

√
�̂�2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 )

 
 
 

2

=
𝑅2

1 − 𝑅2
 

All in all, the next sections will i) show the direct relationship between the coefficient of 

correlation and the coefficient of determination, ii) show that the square of the T statistic is the 

F statistic, iii) showing the direct relationship between the F statistic and the coefficient of 

determination and iv) some concluding comments on how to use the F statistic to make 

analogous hypothesis tests as the one covered in section (d) i). 

 

a. The relationship between the coefficient of determination and the coefficient of 

determination 

We start by recalling the formula for the coefficient of determination: 

𝑅2 =
𝐸𝑆𝑆

𝑇𝑆𝑆
=
∑ (�̂�𝑡 − �̅�)

2𝑛
𝑖=1

∑ (𝑦𝑡 − 𝑦)2
𝑛
𝑖=1
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By definition, we know that: 

�̂�𝑡 = �̂� + �̂�𝑥𝑡 

By the optimisation process of OLS, we know that: 

�̂� = �̅� − �̂��̅� 

�̂� =
∑ (𝑥𝑡 − �̅�)(𝑦𝑡 − �̅�)
𝑛
𝑖=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

 

Substituting the formula for �̂�𝑡 in the numerator of 𝑅2, we get:  

𝑅2 =
∑ (�̂� + �̂�𝑥𝑡 − �̅�)

2𝑛
𝑖=1

∑ (𝑦𝑡 − 𝑦)2
𝑛
𝑖=1

 

Substituting the OLS formula for �̂� in the numerator of 𝑅2, we get: 

𝑅2 =
∑ (�̅� − �̂��̅� + �̂�𝑥𝑡 − �̅�)

2𝑛
𝑖=1

∑ (𝑦𝑡 − 𝑦)2
𝑛
𝑖=1

 

Noticing that the �̅�’s cancel out, the formula collapses to: 

𝑅2 =
∑ (�̂�𝑥𝑡 − �̂��̅�)

2𝑛
𝑖=1

∑ (𝑦𝑡 − 𝑦)2
𝑛
𝑖=1

 

Using �̂� as a common factor, we get: 

𝑅2 =
∑ (�̂�(𝑥𝑡 − �̅�))

2
𝑛
𝑖=1

∑ (𝑦𝑡 − 𝑦)2
𝑛
𝑖=1

 

Using the rules of calculus11, we get: 

𝑅2 =
∑ �̂�2(𝑥𝑡 − �̅�)

2𝑛
𝑖=1

∑ (𝑦𝑡 − 𝑦)2
𝑛
𝑖=1

 

As �̂�2, we can take it out of the summation operator to get: 

𝑅2 =
�̂�2∑ (𝑥𝑡 − �̅�)

2𝑛
𝑖=1

∑ (𝑦𝑡 − 𝑦)2
𝑛
𝑖=1

 

                                           
11 Remember that (𝑎𝑥)2 = 𝑎2𝑥2 
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Substituting the formula for the OLS estimator �̂� in the previous expression yields: 

𝑅2 =

(
∑ (𝑥𝑡 − �̅�)(𝑦𝑡 − �̅�)
𝑛
𝑖=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

)
2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1

∑ (𝑦𝑡 − 𝑦)2
𝑛
𝑖=1

 

Which is equivalent to: 

𝑅2 =

(∑ (𝑥𝑡 − �̅�)(𝑦𝑡 − �̅�)
𝑛
𝑖=1 )2

(∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 )2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1

∑ (𝑦𝑡 − 𝑦)2
𝑛
𝑖=1

=

(∑ (𝑥𝑡 − �̅�)(𝑦𝑡 − �̅�)
𝑛
𝑖=1 )2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1

(∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 )2

∑ (𝑦𝑡 − 𝑦)2
𝑛
𝑖=1

 

Further simplifying gets us to: 

𝑅2 =

(∑ (𝑥𝑡 − �̅�)(𝑦𝑡 − �̅�)
𝑛
𝑖=1 )2

(∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1 )1

(∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 )2

∑ (𝑦𝑡 − 𝑦)2
𝑛
𝑖=1

=

(∑ (𝑥𝑡 − �̅�)(𝑦𝑡 − �̅�)
𝑛
𝑖=1 )2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

∑ (𝑦𝑡 − 𝑦)2
𝑛
𝑖=1

 

Using the rules of calculus, we can rewrite the previous expression as: 

𝑅2 =
(∑ (𝑥𝑡 − �̅�)(𝑦𝑡 − �̅�)

𝑛
𝑖=1 )2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 ∑ (𝑦𝑡 − 𝑦)2

𝑛
𝑖=1

 

Taking the square root of the previous expression yields: 

√𝑅2 =
∑ (𝑥𝑡 − �̅�)(𝑦𝑡 − �̅�)
𝑛
𝑖=1

√∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 ∑ (𝑦𝑡 − 𝑦)2

𝑛
𝑖=1

= 𝑟 

Hence, if 𝑟 = √𝑅2, then squaring both sides yields: 

𝑅2 = 𝑟2 

Hence, one way in which the coefficient of determination can be used to test whether two 

variables 𝑋 and 𝑌 are related is because the coefficient of determination is nothing but the 

square of the coefficient of correlation! Hence, it will always provide a measure on how well 

two variables are related. 

 

b. The relationship between the F statistic and the T statistic 

However, note that the previous section only highlights that the coefficient of determination is 

influenced by the coefficient of correlation. Still we haven’t provided a proper statistical test.  
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Recall the classical linear regression model: 

𝑦𝑡 = 𝛼 + 𝛽𝑥 + 휀𝑡 

In very simple terms, analysing whether 𝑦𝑡 and 𝑥𝑡 are related is just a matter of determining 

the sign of the partial derivative of 𝑦𝑡 with respect to 𝑥𝑡. Given that  

𝜕𝑦𝑡
𝜕𝑥𝑡

≠ 0 

Would serve as evidence supporting a relationship between 𝑦𝑡 and 𝑥𝑡. Note that, when 

computing such partial derivative, we get: 

𝜕𝑦𝑡
𝜕𝑥𝑡

=
𝜕(𝛼 + 𝛽𝑥 + 휀𝑡)

𝜕𝑥𝑡
= 𝛽 

Which is just the coefficient of 𝑥𝑡. Hence, our statistical test to check whether 𝑦𝑡 and 𝑥𝑡 are 

related has to involve a test that analyses whether the coefficient of 𝛽 is different from 0. Notice 

that this test is pretty similar to the one proposed before. More generally, the test we used in 

subsection i) was testing the null hypothesis: 

𝐻0: 𝛽 = 𝛽0 

Against the alternative hypothesis: 

𝐻1: 𝛽 ≠ 𝛽0 

In the previous section, we set 𝛽0 = 0.2. Here, we would just need to set 𝛽0 = 0. The test 

statistic, hence, should be modified accordingly. Generally, the test statistic reads: 

𝑇 =
(�̂� − 𝛽0)

√
�̂�2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

 

As we set 𝛽0 = 0, the specific test of hypothesis when testing whether 𝑦𝑡 and 𝑥𝑡 are related 

would be: 

𝑇 =
�̂�

√
�̂�2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1
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This looks fine as far as it goes: we found a test that will help us to analyse whether 𝑦𝑡 and 𝑥𝑡 

are related. However, e haven’t showed whether there is a relationship between the coefficient 

of determination and such a test. The remainder of this section will show that the squared of 

the proposed test statistic is an F test. The next section will show that the F statistic is indeed 

related with the coefficient of determination. 

We know that an F test takes the form: 

𝐹 =
𝑞

𝑚

𝑇𝑆𝑆 − 𝑅𝑆𝑆

𝑅𝑆𝑆
 

Where 𝑞 and 𝑚 are, respectively, the degrees of freedom of the denominator and the numerator. 

Squaring the expression for 𝑇 yields: 

𝑇2 =
�̂�2

�̂�2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

 

Rearranging yields: 

𝑇2 =
�̂�2∑ (𝑥𝑡 − �̅�)

2𝑛
𝑖=1

�̂�2
 

As defined before, �̂�2 =
∑ ̂𝑡

2𝑛
𝑡=1

𝑛−2
, substituting �̂�2 in the previous expression gives us: 

𝑇2 =
�̂�2∑ (𝑥𝑡 − �̅�)

2𝑛
𝑖=1

∑ 휀�̂�
2𝑛

𝑡=1
𝑛 − 2

 

Rearranging, we get: 

𝑇2 = (
(𝑛 − 2)

1
)
�̂�2∑ (𝑥𝑡 − �̅�)

2𝑛
𝑖=1

∑ 휀�̂�
2𝑛

𝑡=1

 

Substituting �̂� by its OLS expression yields: 

𝑇2 = (
(𝑛 − 2)

1
)

(
∑ 𝑥𝑡(𝑦𝑡 − �̅�)
𝑛
𝑖=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

)
2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1

∑ 휀�̂�
2𝑛

𝑡=1

 

Which is equal to: 
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𝑇2 = (
(𝑛 − 2)

1
)

(∑ 𝑥𝑡(𝑦𝑡 − �̅�)
𝑛
𝑖=1 )2(∑ (𝑥𝑡 − �̅�)

2𝑛
𝑖=1 )1

(∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 )2

∑ 휀�̂�
2𝑛

𝑡=1

 

Which, after simplifying, collapses to: 

𝑇2 = (
(𝑛 − 2)

1
)

(∑ 𝑥𝑡(𝑦𝑡 − �̅�)
𝑛
𝑖=1 )2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

∑ 휀�̂�
2𝑛

𝑡=1

 

Noticing that 
(∑ 𝑥𝑡(𝑦𝑡−�̅�)

𝑛
𝑖=1 )

2

∑ (𝑥𝑡−�̅�)2
𝑛
𝑖=1

= −
(∑ 𝑥𝑡(𝑦𝑡−�̅�)

𝑛
𝑖=1 )

2

∑ (𝑥𝑡−�̅�)2
𝑛
𝑖=1

+ 2
(∑ 𝑥𝑡(𝑦𝑡−�̅�)

𝑛
𝑖=1 )

2

∑ (𝑥𝑡−�̅�)2
𝑛
𝑖=1

, we get: 

𝑇2 = (
(𝑛 − 2)

1
)

−
(∑ 𝑥𝑡(𝑦𝑡 − �̅�)

𝑛
𝑖=1 )2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

+ 2
(∑ 𝑥𝑡(𝑦𝑡 − �̅�)

𝑛
𝑖=1 )2

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

∑ 휀�̂�
2𝑛

𝑡=1

 

Multiplying the first element of the numerator by 
∑ (𝑥𝑡−�̅�)

2𝑛
𝑖=1

∑ (𝑥𝑡−�̅�)2
𝑛
𝑖=1

= 1 and noticing that 

(∑ 𝑥𝑡(𝑦𝑡 − �̅�)
𝑛
𝑖=1 )2 = ∑ 𝑥𝑡(𝑦𝑡 − �̅�)

𝑛
𝑖=1 ∗ ∑ 𝑥𝑡(𝑦𝑡 − �̅�)

𝑛
𝑖=1 , we get: 

𝑇2 = (
(𝑛 − 2)

1
)

−
(∑ 𝑥𝑡(𝑦𝑡 − �̅�)

𝑛
𝑖=1 )2

(∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1 )2

∑ (𝑥𝑡 − �̅�)
2𝑛

𝑖=1 + 2
∑ 𝑥𝑡(𝑦𝑡 − �̅�)
𝑛
𝑖=1

∑ (𝑥𝑡 − �̅�)2
𝑛
𝑖=1

∑ 𝑥𝑡(𝑦𝑡 − �̅�)
𝑛
𝑖=1

∑ 휀�̂�
2𝑛

𝑡=1

 

Substituting 
∑ 𝑥𝑡(𝑦𝑡−�̅�)
𝑛
𝑖=1

∑ (𝑥𝑡−�̅�)2
𝑛
𝑖=1

 by �̂�, we get: 

𝑇2 = (
(𝑛 − 2)

1
)
−�̂�2∑ (𝑥𝑡 − �̅�)

2𝑛
𝑖=1 + 2�̂� ∑ 𝑥𝑡(𝑦𝑡 − �̅�)

𝑛
𝑖=1

∑ 휀�̂�
2𝑛

𝑡=1

 

Substituting ∑ (𝑦𝑡 − �̅�)
2𝑛

𝑖=1 − ∑ (𝑦𝑡 − �̅�)
2𝑛

𝑖=1 = 0 in the numerator, we get: 

𝑇2 = (
(𝑛 − 2)

1
)
∑ (𝑦𝑡 − �̅�)

2𝑛
𝑖=1 − ∑ (𝑦𝑡 − �̅�)

2𝑛
𝑖=1 − �̂�2∑ (𝑥𝑡 − �̅�)

2𝑛
𝑖=1 + 2�̂� ∑ 𝑥𝑡(𝑦𝑡 − �̅�)

𝑛
𝑖=1

∑ 휀�̂�
2𝑛

𝑡=1

 

Noticing that: 

−∑(𝑦𝑡 − �̅�)
2

𝑛

𝑖=1

− �̂�2∑(𝑥𝑡 − �̅�)
2

𝑛

𝑖=1

+ 2�̂�∑𝑥𝑡(𝑦𝑡 − �̅�)

𝑛

𝑖=1

= −[∑(𝑦𝑡 − �̅�)
2

𝑛

𝑖=1

�̂�2∑(𝑥𝑡 − �̅�)
2

𝑛

𝑖=1

− 2�̂�∑𝑥𝑡(𝑦𝑡 − �̅�)

𝑛

𝑖=1

] 

𝑇2 is equal to: 

𝑇2 = (
(𝑛 − 2)

1
)
∑ (𝑦𝑡 − �̅�)

2𝑛
𝑖=1 − [∑ (𝑦𝑡 − �̅�)

2𝑛
𝑖=1 + �̂�2∑ (𝑥𝑡 − �̅�)

2𝑛
𝑖=1 − 2�̂� ∑ 𝑥𝑡(𝑦𝑡 − �̅�) 

𝑛
𝑖=1 ]

∑ 휀�̂�
2𝑛

𝑡=1
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Including the �̂�’s within the summation terms, we get: 

𝑇2 = (
(𝑛 − 2)

1
)
∑ (𝑦𝑡 − �̅�)

2𝑛
𝑖=1 − [∑ (𝑦𝑡 − �̅�)

2𝑛
𝑖=1 + ∑ �̂�2(𝑥𝑡 − �̅�)

2𝑛
𝑖=1 − 2∑ �̂�𝑥𝑡(𝑦𝑡 − �̅�) 

𝑛
𝑖=1 ]

∑ 휀�̂�
2𝑛

𝑡=1

 

Given that  

∑𝑥𝑡(𝑦𝑡 − �̅�) 

𝑛

𝑖=1

=∑(𝑥𝑡 − �̅�)(𝑦𝑡 − �̅�)

𝑛

𝑖=1

 

The previous expression becomes: 

𝑇2 = (
(𝑛 − 2)

1
)
∑ (𝑦𝑡 − �̅�)

2𝑛
𝑖=1 − [∑ (𝑦𝑡 − �̅�)

2𝑛
𝑖=1 +∑ �̂�2(𝑥𝑡 − �̅�)

2𝑛
𝑖=1 − 2∑ �̂�(𝑥𝑡 − �̅�)(𝑦𝑡 − �̅�) 

𝑛
𝑖=1 ]

∑ 휀�̂�
2𝑛

𝑡=1

 

Noticing that (𝑎 − 𝑏)2 ≡ 𝑎2 + 𝑏2 − 2𝑎𝑏, we can rewrite the previous expression as: 

𝑇2 = (
(𝑛 − 2)

1
)
∑ (𝑦𝑡 − �̅�)

2𝑛
𝑖=1 − [(∑ (𝑦𝑡 − �̅�)

𝑛
𝑖=1 −∑ �̂�(𝑥𝑡 − �̅�)

𝑛
𝑖=1 )

2
]

∑ 휀�̂�
2𝑛

𝑡=1

 

Using the rules of the summation operator, we can divide the summation terms within the 

brackets into a single summation term: 

𝑇2 = (
(𝑛 − 2)

1
)
∑ (𝑦𝑡 − �̅�)

2𝑛
𝑖=1 − [(∑ ((𝑦𝑡 − �̅�) − �̂�(𝑥𝑡 − �̅�))

𝑛
𝑖=1 )

2
]

∑ 휀�̂�
2𝑛

𝑡=1

 

Expanding �̂�(𝑥𝑡 − �̅�), we get: 

𝑇2 = (
(𝑛 − 2)

1
)
∑ (𝑦𝑡 − �̅�)

2𝑛
𝑖=1 − [(∑ (𝑦𝑡 − �̅� − �̂�𝑥𝑡 + 𝛽�̂̅�)

𝑛
𝑖=1 )

2
]

∑ 휀�̂�
2𝑛

𝑡=1

 

Which is equivalent to: 

𝑇2 = (
(𝑛 − 2)

1
)
∑ (𝑦𝑡 − �̅�)

2𝑛
𝑖=1 − [(∑ (𝑦𝑡 − (�̅� − �̂��̅�) − �̂�𝑥𝑡)

𝑛
𝑖=1 )

2
]

∑ 휀�̂�
2𝑛

𝑡=1

 

Noticing that �̂� = �̅� − �̂��̅�, we can rewrite the previous expression as: 

𝑇2 = (
(𝑛 − 2)

1
)
∑ (𝑦𝑡 − �̅�)

2𝑛
𝑖=1 − [(∑ (𝑦𝑡 − �̂�− �̂�𝑥𝑡)

𝑛
𝑖=1 )

2
]

∑ 휀�̂�
2𝑛

𝑡=1

 

Which can be rewritten as: 
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𝑇2 = (
(𝑛 − 2)

1
)
∑ (𝑦𝑡 − �̅�)

2𝑛
𝑖=1 − [(∑ (𝑦𝑡 − (�̂� + �̂�𝑥𝑡))

𝑛
𝑖=1 )

2
]

∑ 휀�̂�
2𝑛

𝑡=1

 

Noticing that �̂� + �̂�𝑥𝑡 = �̂�
𝑡
, we can rewrite the previous expression as: 

𝑇2 = (
(𝑛 − 2)

1
)
∑ (𝑦𝑡 − �̅�)

2𝑛
𝑖=1 − [(∑ (𝑦𝑡 − �̂�𝑡)

𝑛
𝑖=1 )2]

∑ 휀�̂�
2𝑛

𝑡=1

 

Noticing that 𝑦𝑡 − �̂�
𝑡
= 휀̂𝑡, we can rewrite the previous expression as: 

𝑇2 = (
(𝑛 − 2)

1
)
∑ (𝑦𝑡 − �̅�)

2𝑛
𝑖=1 − [(∑ (휀�̂�)

𝑛
𝑖=1 )2]

∑ 휀�̂�
2𝑛

𝑡=1

 

Noticing that 𝑇𝑆𝑆 = ∑ (𝑦𝑡 − �̅�)
2𝑛

𝑖=1  and 𝑅𝑆𝑆 = ∑ 휀�̂�
2𝑛

𝑡=1 , the previous expression becomes: 

𝑇2 = (
(𝑛 − 2)

1
)
𝑇𝑆𝑆 − 𝑅𝑆𝑆

𝑅𝑆𝑆
≡ 𝐹 

Also, note that, in its general form, a t-student variable is formed in the following way: 

𝑇 =
𝑁(0,1)

√𝜒(𝑛)
2

𝑛

 

Squaring both sides gives: 

𝑇2 =
(𝑁(0,1))

2

(√
𝜒(𝑛)
2

𝑛 )

2 =
𝜒(1)
2

𝜒(𝑛)
2

𝑛

 

As the numerator only includes one normal (0,1) squared. As 𝜒(1)
2 =

𝜒(1)
2

1
, the previous equation 

is equivalent to: 

𝑇2 =
(𝑁(0,1))

2

(√
𝜒(𝑛)
2

𝑛 )

2 =

𝜒(1)
2

1
𝜒(𝑛)
2

𝑛

= (
𝑛

1
) (
𝜒(1)
2

𝜒(𝑛)
2 ) 

As a fraction of two chi square variables multiplied by the ratio of their degrees of freedom is 

the definition of a variable following an F distribution, then it follows that: 
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𝑇2 = (
(𝑛 − 2)

1
)
𝑇𝑆𝑆 − 𝑅𝑆𝑆

𝑅𝑆𝑆
≡ 𝐹 = (

𝑛

1
) (
𝜒(1)
2

𝜒(𝑛)
2 )~𝐹(1,𝑛−2) 

Hence, in this section we have demonstrated that the square of the 𝑇 statistic is the 𝐹 statistic 

and that the 𝐹 statistic follows a 𝐹 distribution. 

 

c. The relationship between the F statistic and the coefficient of determination 

This last section demonstrates that the 𝐹 statistic is directly related with the coefficient of 

determination. More specifically, 

𝐹 =
𝑅2

1 − 𝑅2
 

Recalling the F statistic: 

𝐹 = (
(𝑛 − 2)

1
)
𝑇𝑆𝑆 − 𝑅𝑆𝑆

𝑅𝑆𝑆
 

Multiplying the 𝑅𝑆𝑆 in the denominator by 
𝑇𝑆𝑆

𝑇𝑆𝑆
= 1, we get: 

𝐹 = (
(𝑛 − 2)

1
)
𝑇𝑆𝑆 − 𝑅𝑆𝑆 ∗

𝑇𝑆𝑆
𝑇𝑆𝑆

𝑅𝑆𝑆
 

Using 𝑇𝑆𝑆 as a common factor, we get: 

𝐹 = (
(𝑛 − 2)

1
)
𝑇𝑆𝑆 ∗ (1 −

𝑅𝑆𝑆
𝑇𝑆𝑆

)

𝑅𝑆𝑆
 

By noticing that 𝑅2 =
𝐸𝑆𝑆

𝑇𝑆𝑆
= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆
, we get: 

𝐹 = (
(𝑛 − 2)

1
)
𝑇𝑆𝑆 ∗ (𝑅2)

𝑅𝑆𝑆
 

Using the rules of calculus, the previous equation is equivalent to: 

𝐹 = (
(𝑛 − 2)

1
)
𝑅2

𝑅𝑆𝑆
𝑇𝑆𝑆

 

As 𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
, then it follows that 1 − 𝑅2 =

𝑅𝑆𝑆

𝑇𝑆𝑆
. Hence, 
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𝐹 = (
(𝑛 − 2)

1
)

𝑅2

1 − 𝑅2
= (

(𝑛 − 2)

1
)

𝑟2

1 − 𝑟2
 

 

d. Concluding remarks for hypothesis testing 

In this exercise, we have learned several things. First, that the coefficient of determination and 

the coefficient of correlation are related. Second, that to test whether two variables are related 

we can use a 𝑇 test or, alternatively, an 𝐹 test. Third, that the 𝐹 test that serves to analyse 

whether to variables are related statistically is, indeed, related with the coefficient of 

correlation.  

Hence, in order to test whether two variables are related the coefficient of correlation is a key 

element to take into account. Not only provides a measurement of correlation of two variables, 

but can be used, as shown in the equation above, to provide a statistical test of the relation 

between two variables. 

Finally, the coefficient of determination also has a dual role. It provides a measurement on how 

much part of the variance of a variable is to be explained by the variance of another variable. 

And, as well, it provides a statistical test to analyse the relation between two variables. 

At the 5% level, we have: 

𝑇2 = (
0.25

0.05
)
2

= (5)2 = 25 = 𝐹 

Also, the critical value is the square of the critical value for the t distribution analysed before 

(4). 

Hence, as 25 > 4, it follows that we can reject the null hypothesis of no correlation in favour 

of the alternative hypothesis of correlation. 

 

 


